
Work Package 3, Deliverables 3.1 and 3.2:
Development of Software Libraries
Software Implementation Approaches for Post-quantum Cryptography on Embedded
Systems

Version 1.0
Project Coordination Fraunhofer Institute for Secure Information Technology
Date of preparation May 5, 2023

Authors

• Elektrobit Automotive GmbH:

• Hannes Hennig

• Fraunhofer SIT:

• Julian Wälde

• Norman Lahr

• Richard Petri

• Hochschule RheinMain:

• Thorsten Knoll

• MTG AG:

• Evangelos Karatsiolis

• Johannes Roth

• Ruhr-Universität Bochum:

• Georg Land

• Jan Philipp Thoma

• Universität Regensburg:

• Michael Meyer

Project Coordination
Norman Lahr
Fraunhofer Institute for Secure Information Technology
Advanced Cryptographic Engineering
Rheinstr. 75
D-64295 Darmstadt
Germany

Phone +49 6151 869100
Fax +49 6151 869224
Mail norman.lahr@sit.fraunhofer.de

mailto:norman.lahr@sit.fraunhofer.de

Contents

1 Executive Summary 5

2 Introduction 7

3 D3.1 – Design and Implementation in Software 9
3.1 PQC Libraries: Existing and related . 9
3.2 Proposed PQC API . 13
3.3 Software Implementation and Optimization of PQC Algorithms 16

3.3.1 Mitigation of Memory Requirements with a Streaming Approach 17
3.3.2 Carry-Less to BIKE faster . 25
3.3.3 Optimizing Kyber and NewHope Ciphers on RISC-V 26
3.3.4 Finite Field Arithmetic in Kyber and NewHope 27
3.3.5 Number Theoretic Transform 28

3.4 Design and Implementation of PQC-Based Protocols 28
3.4.1 X.509 Certificates . 29
3.4.2 TLS 1.3 . 30
3.4.3 Existing PQC Protocol Approaches and Implementations 30
3.4.4 Challenges regarding the Integration of PQC in TLS and X.509 . 33
3.4.5 Classic McEliece Streaming in TLS 1.2 34
3.4.6 SPHINCS+ and Streaming TPM 2.0 36
3.4.7 Stateful Hash-Based Signature Schemes 39

3.5 Mixed PQ-PKI . 41
3.5.1 Considerations for Mixed Post-Quantum X.509 Certificate Chains 41
3.5.2 Mixing PQC Algorithms in TLS 42

4 D3.2 Hardening Measures 49
4.1 Overview of Physical Attacks . 49

4.1.1 Timing Attacks . 49
4.1.2 Simple Power Analysis (SPA) and Differential Power Analysis (DPA) 50
4.1.3 Fault Attacks . 51

4.2 Implemented Counter-Measures . 51
4.2.1 Classic McEliece Streaming in Constant-Time 51
4.2.2 XMSS Implementation on a Hardware Security Module 52
4.2.3 Timing Attack and Countermeasure on the Rejection Sampling

of HQC and BIKE . 54

Bibliography 55

Development of Software Libraries
Contents 3

1 Executive Summary

QuantumRISC is a project funded by the German Federal Ministry of Education and Re-
search. The goal of the project is to research, analyze, and develop schemes, algorithms,
and methods for the secure and efficient use of post-quantum cryptographic algorithms
for embedded devices. The project is divided into several work packages. Work package
3 (WP3) of the QuantumRISC project focuses on the design and implementation of
post-quantum algorithms and protocols in software. The document at hand presents
the work of the partners of the project team regarding WP3.

First we present previous work in this area by giving an overview of existing software
libraries and products and briefly discussing them. To easily use and integrate crypto-
graphic schemes in libraries and applications, a flexible and agile API is necessary. We
address this issue by specifying an API and analysing its use.

Several post-quantum cryptographic algorithms feature large public-key or signature
sizes. We discuss methods and algorithms to mitigate the memory requirements of the
cryptographic schemes Classic McEliece and SPHINCS+. We also present a method to
accelerate the cryptographic operations of the key encapsulation algorithm BIKE.

Several cryptographic protocols and specifications like TLS and X.509 certificates are
described and are evaluated for their use with post-quantum algorithms. We discuss the
challenges and propose solutions for a suitable integration for some of these algorithms.

We also analyze and experiment with using more than one cryptographic algorithm
within a certificate chain hierarchy. A test suite for the TLS use case is described and
the test results are presented.

A very important aspect of implementing cryptographic algorithms in software is
their resistance to side-channel attacks such as timing or power analysis attacks. The
rest of the document deals with this aspect. A brief overview of side-channel attacks
is given. Our implemented countermeasures for post-quantum algorithms are shown.
In particular, the constant-time implementation of Classic McEliece and the stateful
signature method XMSS in a hardware security module are presented. Lastly, we
present a timing attack on the HQC and BIKE schemes.

Development of Software Libraries
Executive Summary 5

2 Introduction

This document reports the results of work package 3 (WP3) of the QuantumRISC
project. These results are new software methods and algorithms for post quantum
algorithms that have been analysed in the project (see [MM22]) and are suited for the
specified use cases (see [Noa+20]).

This work package WP3 has two deliverables:

• D 3.1 – Documentation of the software library

• D 3.2 – Documentation of the hardening measures

D 3.1 is documented in Chapter 3 and D 3.2 in Chapter 4. These two deliverables are
placed into one report to provide a better overview on the content of the deliverables
and present the dependencies among them clearly.

Chapter 3 documents various aspects of the software methods and libraries for
post-quantum cryptography developed in this project.

Chapter 4 gives an overview of considered side-channel attacks and countermeasures.
The countermeasures contained in the software libraries are discussed and described
in detail.

Development of Software Libraries
Introduction 7

3 D3.1 – Design and Implementation in
Software

This chapter presents the results of the research and development of software imple-
mentations and optimizations of PQC that are part of the work package WP3.

Section 3.1 gives an overview of previous work with a listing of existing libraries and
software implementations of PQC algorithms. Section 3.2 presents the developed API
which allows easy integration and use of post-quantum algorithms. Section 3.3 presents
various implementations of post-quantum algorithms in software. Optimizations for
the algorithms Classic McEliece, Bike, Kyber, and NewHope are shown. Section 3.4
describes the challenges in the use of post-quantum algorithms in various protocols
and suggests solutions for some of these cases. Lastly, in Section 3.5 the mixing of PQC
schemes in certificate chains is discussed.

3.1 PQC Libraries: Existing and related

The topic of Post-Quantum Cryptography (PQC) is around for already more than a
decade now. A potpourri of publications, projects, algorithms, implementations, stan-
dardization efforts, and many more interests have arisen since then. The American
National Institute of Standards and Technology (NIST) started a process for standard-
ization of PQC, being near the finish line. Ahead of the finalization of the NIST process,
the German Federal Office for Information Security (BSI) started giving out first recom-
mendations for practical implementation and usage of PQC. Therefore it is necessary to
look into what already has happened and what got developed in the field of software
for PQC.

In this section we give an overview about these works, with a focus on existing and
lively maintained PQC libraries. Each library gets it’s own profile card to display the
main characteristics, criteria, and features of it. Appending to the profile cards a list of
works related to PQC libraries is provided. Commercial libraries are discussed at the
end of this overview. All information about the libraries and related works is collected
from their public available websites and dates of the retrieval are given.

Development of Software Libraries
D3.1 – Design and Implementation in Software 9

Name: License:
LibOQS Main: MIT License.

External parts: Various
Description:
liboqs is an open source C library for quantum-safe cryptographic algorithms.
liboqs provides a collection of open-source implementations of quantum-safe
key encapsulation mechanisms (KEM) and digital signature algorithms,
a common API for these algorithms, a test harness and benchmarking routines.
Source of Information, Website, 21.11.22:
https://openquantumsafe.org/liboqs/
Algorithms: Coding languages::
KEMs and Signature schemes from C with wrappers in C++, Go, Java,
NIST Round 3. Finalists and alternate .Net, Python, and Rust.
candidates.
API: Platforms
C API No specific platforms as targets.

Table 3.1: Profile card: liboqs, Source: Website, see link above.

Name:
PQClean
License:
No general license. All subdirectories contain LICENSE files or
information at the top of single files. Most files are public domain,
MIT or CC0.
Description:
PQClean, in short, is an effort to collect clean implementations of the
post-quantum schemes that are in the NIST post-quantum project,
where clean means that the C code conforms to a defined code quality standard.
The goal of PQClean is to provide standalone implementations.
The project’s website describes these goals in deeper detail and
points out what PQClean does not aim at.
Source of Information, Website, 21.11.22:
https://github.com/PQClean/PQClean
Algorithms: Coding languages:
Selection from the NIST PQC. C
API: Platforms:
Aims for easy integration into other No specific platforms as targets.
libraries like liboqs, pqm4, SUPERCOP,
or Open Quantum Safe.

Table 3.2: Profile card: PQClean, Source: Website, see link above.

10 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://openquantumsafe.org/liboqs/
https://github.com/PQClean/PQClean

Name:
mupq
License:
Different subpojects of mupq have different licenses. Individually given in
LICENSE files or at the top of single files. Most files are public domain,
MIT or CC0.
Description:
mupq aims at PQC for microcontrollers (MCU) and contains multiple sub-
projects for different platforms (pqm4, pqm3, pqriscv, pqhw, pqriscv).
Initial parts of mupq were started out of the EU funded PQCRYPTO
project and developed from there into a larger maintainer base.
PQC NIST candidates from all rounds are to be found in the subprojects.
Source of Information, Website, 21.11.22:
https://github.com/mupq
Algorithms: Coding languages:
Several algorithms from all NIST
rounds: candidates, finalists, and

C. Some parts (pqhw, pqriscv) parts are
written in hardware description

alternatives. languages (HDL).
API: Platforms:
Large parts of the mupq (pqm4) library ARM Cortex M3 and M4,
uses the NIST/SUPERCOP/ Risc-V, FPGAs, ARM Neon
PQClean API.

Table 3.3: Profile card: mupq, Source: Website, see link above.

Name: License:
libpqcrypto The components of libpqcrypto vary in

licenses. Some parts are in the public
domain, but others are not.

Description:
libpqcrypto is a new cryptographic software library produced by the
PQCRYPTO project.
Source of Information, Website, 21.11.22:
https://libpqcrypto.org/
Algorithms: Coding languages:
PQCRYPTO submissions for NIST PQC C with Python API/wrapper
API: Platforms:
Unified Interfaces in C and Python. No specific platforms as targets.
Command line tools.

Table 3.4: Profile card: libpqcrypto, Source: Website, see link above.

Development of Software Libraries
PQC Libraries: Existing and related 11

https://github.com/mupq
https://libpqcrypto.org/

Name: License:
CIRCL Cloudflare open-source license.
Description:
CIRCL (Cloudflare Interoperable, Reusable Cryptographic Library) is a
collection of cryptographic primitives written in Go. The goal of this
library is to be used as a tool for experimental deployment of
cryptographic algorithms targeting PQC and ECC.
Source of Information, Website, 21.11.22:
https://github.com/cloudflare/circl
Algorithms: Coding languages:
PQC and ECC Go
API: Platforms:
No specific API. No specific platforms as targets.

Table 3.5: Profile card: CIRCL, Source: Website, see link above.

Name: License:
NIST PQC standardization process Various licenses.
Description:
The complete collection of all submissions for the NIST Post-Quantum
Cryptography Standardization Process. This includes the history of
the submissions over all four rounds.
Source of Information, Website, 21.11.22:
https://csrc.nist.gov/projects/post-quantum-cryptography
Algorithms: Coding languages:
All submissions. All Algorithms. C, C++
API: Platforms:
NIST PQC C header API. No specific platforms as targets.

Table 3.6: Profile card: NIST PQC References, Source: Website, see link above.

Related to PQC libraries: Not beeing full PQC libraries in itself, but very close related
to the mentioned libraries are the following works.

• SUPERCOP: A toolkit for measuring the performance of cryptographic software,
widley used and implemented by libraries.1

• MbedTLS implements cryptographic primitives, X.509 certificate manipulation
and the SSL/TLS and DTLS protocols.2

• BOTAN is a C++ cryptography library released under the permissive Simplified
BSD license.3

1https://bench.cr.yp.to/supercop.html
2https://github.com/Mbed-TLS/mbedtls
3https://botan.randombit.net/

12 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://github.com/cloudflare/circl
https://csrc.nist.gov/projects/post-quantum-cryptography
https://bench.cr.yp.to/supercop.html
https://github.com/Mbed-TLS/mbedtls
https://botan.randombit.net/

• Bouncy Castle is a Java cryptographic library, with several PQC implementations.4

Commercial PQC libraries:

• PQSLib describes itself as a Lightweight PQC library for Embedded, IoT, and
Secure Elemets.5

• Radiate Toolkit describes itself as a high-performance, lightweight, standards-
based quantum-safe software development kit.6

3.2 Proposed PQC API

The first step to achieve an agile API for a set of cryptographic schemes is to provide
a standardized interface. In the past, this first step was a major hurdle, as neither
programming interfaces nor data formats were sufficiently defined and varied between
cryptographic schemes. In the case of asymmetric cryptographic schemes, the common
approach nowadays is to abstract the differences behind a standardized interface.

In our agile API, key generation for all asymmetric schemes is handled by a function
that generates a key pair and stores it in a byte buffer of an implementation defined
size:

in t {kem , s ign } _keypai r (byte* pk , byte* sk) ;

Note that the contents of the byte buffer are opaque to the programmer. PQC schemes
usually explicitly define a storage format for the keys and implementations adhere to it,
except for the secret key, which may in some cases be implementation defined, since it
is usually never intended to be exchanged and used by another implementation. In
either case, the programmer using such an API does not need to be concerned with
storage formats except for byte arrays, albeit of different sizes. Similar concepts apply
to the key encapsulation and decapsulation or signature generation and verification.

With such a standardized interface, the process of exchanging a cryptographic scheme
in the application is as easy as exchanging a library against which the application is
compiled. If, however, an application must support multiple schemes at the same time,
this approach falls short. To facilitate this, we developed two mechanisms that enable
an application to support any number of schemes at the same time.

1. Compile time agility: The first approach utilizes a strict naming convention for
functions and a set of macros, as shown in an excerpt from the API in Listing 3.1.
All functions for a specific cipher have a suffix with the name defined for a cipher.
The macros starting at line 12 then help a programmer to select the correct
function in a flexible manner. An example is shown in Listing 3.2. The first
parameter to these macros specifies the cipher and the macro will resolve to the

4https://www.bouncycastle.org/
5https://pqshield.com/solutions/pqslib/
6https://www.isara.com/products/isara-radiate.html

Development of Software Libraries
Proposed PQC API 13

https://www.bouncycastle.org/
https://pqshield.com/solutions/pqslib/
https://www.isara.com/products/isara-radiate.html

Listing 3.1: Excerpt of function names and macros for compile time agility.
1 typedef enum cbb_kem_id {
2 KYBER512 = 4,
3 SABER = 9,
4 } cbb_kem_id_t;
5
6 int cbb_kem_genkeypair_KYBER512(/* ... */);
7 int cbb_kem_genkeypair_SABER(/* ... */);
8 int cbb_kem_encapsulate_KYBER512(/* ... */);
9 int cbb_kem_encapsulate_SABER(/* ... */);

10
11 #define _CAT(A, B) A##B
12 #define CBB_KEM_GENKEYPAIR(CIPHER, ...) \
13 _CAT(cbb_kem_genkeypair_, CIPHER)(__VA_ARGS__)
14 #define CBB_KEM_ENCAPSULATE(CIPHER, ...) \
15 _CAT(cbb_kem_encapsulate_, CIPHER)(__VA_ARGS__)

Listing 3.2: Program code using compile time agility.
1 #define MYCIPHER1 KYBER512
2 #define MYCIPHER2 SABER
3
4 unsigned char sk1[/*...*/], pk1[/*...*/];
5
6 void function() {
7 CBB_KEM_GENKEYPAIR(MYCIPHER1, pk1, sk1);
8 /* ... */
9 }

14 Development of Software Libraries
D3.1 – Design and Implementation in Software

Listing 3.3: Excerpt of dynamic functions for run time agility.
1 typedef enum cbb_kem_id {
2 KYBER512 = 4,
3 SABER = 9,
4 } cbb_kem_id_t;
5
6 int cbb_kem_genkeypair(cbb_kem_id_t cipher, /* ... */);
7 int cbb_kem_encapsulate(cbb_kem_id_t cipher, /* ... */);
8 int cbb_kem_decapsulate(cbb_kem_id_t cipher, /* ... */);

Listing 3.4: Program code using run time agility.
1 void function(cbb_kem_id_t cipher) {
2 cbb_kem_encapsulate(cipher, /* ... */);
3 /* ... */
4 }

function of the correct name. Note that the name of the cipher may be defined by
macro itself, which enables a programmer to change a cipher simply by redefining
a macro.

2. Run time agility: The first approach works well if the used cipher is fixed for an
application, which may be the case for many constrained applications. It does,
however, fall short if an application does not know which cipher is to be used
ahead of time. Therefore, the API also features a set of dynamic functions as
shown in Listing 3.3. An application can then pass a variable that specifies the
cipher to these functions, as shown in Listing 3.4, that will map the call to the
appropriate cipher function.

The first, static approach is the most suitable for resource constrained applications that
only require support for one scheme. It enables a programmer to create an application
in a manner that is independent from the cryptographic scheme in use, allowing a
quick exchange of schemes if necessary. Furthermore, modern compiler toolchains
will automatically remove the code of the unused ciphers, as their symbols are never
referenced. The second, dynamic approach comes with the additional cost of a small
abstraction layer that multiplexes between all supported ciphers. This abstraction
layer will then be a reference to all compiled ciphers, making automatic code removal
impossible. To alleviate this, our build system is capable of only including a limited set
of ciphers, if only few a required.

Both compile and run time agility concepts require the build system to combine all
required cryptographic scheme implementations into a single library, which may lead
to problems if some implementations share certain symbols. To be able to easily extend
the library in the future, the build system was extended to perform symbol renaming.
Each cryptographic scheme implementation is first compiled separately. The symbols
defined by each implementation are then listed and renamed, i.e., the build system
will automatically append the name of the cipher to each symbol. Note that this only

Development of Software Libraries
Proposed PQC API 15

affects symbols defined by the implementations, and not external symbols used by the
libraries.

Since the description of a flexible API that also integrates hardware implementations
overlaps with work package WP4, parts of this section are also described in [Qrw].

3.3 Software Implementation and Optimization of PQC
Algorithms

From the perspective of software implementations, post-quantum schemes significantly
differ from their pre-quantum counterparts. For instance, RSA only requires simple
modular arithmetic for large integers, and elliptic curve cryptography (ECC) uses the
relatively simple elliptic curve group law, which in turn requires efficient finite field
arithmetic. However, for post-quantum schemes this usually differs significantly, since
they are based on different mathematical hardness assumptions. In the following, we
briefly describe which routines are required for post-quantum schemes. For a more
general overview of PQC schemes and their applicability, we refer to the QuantumRISC
work package 2 [MM22].

Code-based cryptography usually requires mostly matrix multiplications and matrix-
vector multiplications. Further, most schemes use binary fields as underlying structure.
Thus, it not only differs from pre-quantum schemes from a mathematical perspective,
but also regarding the subroutines required for software implementations.

Isogeny-based cryptography is related to elliptic curve cryptography, i.e., it reuses
many subroutines such as the elliptic curve group law and arithmetic over finite fields.
However, on a higher level, the computations of isogenies add significant complexity to
implementations.

Lattice-based cryptography spends most of its computational effort on polynomial
arithmetic. Thus, implementations usually optimize the choice of parameters such
that polynomial multiplication is very efficient. Implementations often use Number
Theoretic Transform (NTT) multiplications to achieve this goal.

Multivariate cryptography resembles code-based and lattice-based schemes in the
sense that it usually requires matrix-vector multiplications. Furthermore, most schemes
make use of Gauss elimination. As for code-based schemes, mostly binary fields are
used.

Hash-based cryptography is an exception in the realm of PQC, in the sense that most of
its computational cost is spent on evaluating hash functions. This is a well-known prim-
itive from pre-quantum cryptography, such that existing optimized implementations of
hash functions can be reused for schemes like SPHINCS+, LMS, or XMSS.

By using streaming in computations of several post-quantum algorithms, these algo-
rithms can be optimized, especially in the case of embedded devices. This is described
in Section 3.3.1. Speed optimization for the key encapsulation mechanism BIKE are
shown in Section 3.3.2. Optimizations in the implementation of the polynomial arith-
metic used in the algorithms Kyber and NewHope are presented in Sections 3.3.3, 3.3.4,
and 3.3.5.

16 Development of Software Libraries
D3.1 – Design and Implementation in Software

3.3.1 Mitigation of Memory Requirements with a Streaming Approach

Post-quantum schemes can have large signatures, ciphertexts, or keys. For example,
Classic McEliece public keys range from roughly a quarter of a megabyte to over a
megabyte, and SPHINCS+ signatures are up to 49 kilobytes. The size alone can prevent
the use of some post-quantum schemes in low-memory microcontrollers that usually
only have memory between 8 to 256 kilobytes. To mitigate the memory requirements,
a streaming approach was explored. The term streaming in this context means that
the data is not processed as one large block of memory but rather processed in smaller
chunks at a time. This is analogous to a video stream, where only the current frame
(and possibly some past and future frames) are needed at one point in time. There is
no need to load the complete video file into the device’s memory. In the context of post-
quantum algorithms this means that only a small chunk of a key or ciphertext/signature
is processed at a time. One goal is to implement streaming in a transparent way, i.e.,
when viewed from the outside, the cryptographic operation should not behave differently
and no protocol changes shall be necessary to support streaming.

This kind of memory-optimization is only applicable if the following is satisfied:

1. The cryptographic operation is performed in an on-line setting. Since the data
in question, i.e., a key or ciphertext/signature, cannot be stored on the device’s
memory due to size constraints, there needs to be some sort of on-line protocol in
which the data is sent to or received from. This is satisfied by any cryptographically
secured, online communication protocol where some sort of key exchange based
on asymmetric cryptography is performed. This can however also be satisfied by
other forms of communication, e.g., a signature could be streamed to (or from)
the device’s own flash memory.

2. The cryptographic primitive can be adapted in such a way that the data can be
processed in distinct chunks without the need to process an already processed
chunk again. The restriction to this case makes sense since otherwise transparency
cannot be achieved.

A more abstract view of the streaming approach is that the communication channel
serves as a special kind of buffer. It is a buffer where large cryptographic data is read
from or written to with the limitation that it can only either be read from sequentially
or written to sequentially and there is no way to go back to the beginning of the buffer.
The upside is that conceptually, the buffer is not stored on the device itself, but in the
communication layer. In more practical terms, usually some parts would be buffered
in the I/O layer until it decides that enough data is accumulated to be read from the
application on the device or to be transmitted to the other communication party(s).

The effectiveness of applying the streaming approach to a cryptographic scheme
depends on how memory-efficiently one can adapt the scheme to use this special model
of a buffer.

The approach was explored and implemented for the Classic McEliece public keys and
the SPHINCS+ signatures and enables the use of these schemes with less memory than
would otherwise be required. In the following, the changes to the schemes are described.
A more detailed description and evaluation can be found in the corresponding published

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 17

papers [NRW21], [RKK21]. Furthermore, the adapted code that enables streaming for
the schemes can be found on Github7,8.

Streaming of Classic McEliece Public Keys

The Classic McEliece scheme is often deemed not suitable for low-memory devices
because of its large public keys. Table 3.7 depicts the Classic McEliece public key sizes.

Parameter Set < 9 Public Key Size
mceliece348864 3488 2720 261120
mceliece460896 4608 3360 524160
mceliece6688128 6688 5024 1044992
mceliece6960119 6960 5413 1047319
mceliece8192128 8192 6528 1357824

Table 3.7: Classic McEliece public key sizes in bytes and the parameters < and 9. 9

is a parameter that is derived from the binary Goppa code parameters and
together with < it determines the public key dimensions.

Classic McEliece is a code-based key encapsulation mechanism scheme. It is in
essence the Niederreiter variant of the original scheme that was proposed by Robert
McEliece in 1978 and uses binary Goppa codes. The OW-CPA secure Niederreiter PKE
is transformed to an IND-CCA2 secure KEM. The private key is a randomly chosen
binary Goppa code (in the form of a generating polynomial) and the public key is the
non-trivial part of a specific parity-check matrix for the linear code. This parity-check
matrix � ∈ F

(<−9)×<
2 is in systematic form, i.e., � = (� |)) with � ∈ F

(<−9)×(<−9)
2 an

identity matrix and) ∈ F (<−9)×92 the public key.
The public key plays a role in the key pair generation operation, as well as in the

encapsulation operation. Both cases require a different approach to enable streaming.
The mceliece6960119 parameter set has been omitted from the streaming approach

since the parameters produce bit sequences of lengths that are not multiples of 8.
However, modern platforms operate on bytes. The trailing bits need an extra handling
which the current implementation does not consider. This has no influence on the
results.

Streaming Encapsulation. To compute the encrypted shared secret, the encapsulation
operation makes use of the public key and computes the syndrome A = �4 where 4 is a
randomly chosen column vector. This is not the complete encapsulation operation, but
the only part where the public key plays a role and hence the part where the streaming
is applied.

A typical implementation would implement the matrix-vector product by holding �

and 4 in a buffer and then perform the multiplication. For implementing the streaming
approach, a possibility is to read in the public key in single rows or columns and

7https://github.com/MTG-AG/streamingCME
8https://github.com/QuantumRISC/mbedSPHINCSplusArtifact

18 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://github.com/MTG-AG/streamingCME
https://github.com/QuantumRISC/mbedSPHINCSplusArtifact

compute A = �4 = �4 +)4 by updating the intermediate result as each row or column is
read. The first step is to compute �4 = 4 which is independent of the public key and
amounts to initializing the resulting vector A with 4. Then, as the rows or columns of
the public key are received, the term)4 can be partially computed for each row or
column. This is achieved by simply multiplying the received part of the public key by 4

and then adding it to the intermediate value of A. After all rows or columns have been
processed, A holds the result of the product �4.

It shall be noted that setting the size of the chunks to one row or column of the public
key is an arbitrary choice. As all terms in the product)4 are independent, any amount
of bytes of the public key in any order can be consumed in one step. Choosing the
granularity of rows or columns, however, already reduces the memory requirements
for the complete encapsulation operation to under 3 kilobytes for all parameter sets.

Utilizing the streaming approach for the encapsulation operation comes at no addi-
tional cost since no computation needs to be carried out that would not be carried out
by a non-streaming approach. This makes the public operation of the Classic McEliece
scheme appealing to embedded clients. As already mentioned, the streaming approach
can also be used for internal communication in the device, e.g., the encapsulation can
be performed with a public key that is stored on the device’s flash memory without
loading it into the (possibly too small) main memory.

Key Pair Generation and Streaming. While the private key holder does not actually
need the public key to perform any cryptographic operations, the public key does need
to be sent to the other communication participant(s). Usually, a key generation would
simply write the public and the private key to a buffer in memory but with the large
public keys this can be impossible. One solution is to compute small chunks of the
public key at a time, e.g., single rows or single columns. As each chunk is computed,
it could be sent to the other participant(s) and then the next chunk is computed. It
is straightforward to compute the Classic McEliece public key from the private key,
however, doing this in small chunks at a time is more challenging. In the Classic
McEliece specification, first some parity-check matrix �̂ is produced for which the rows
or columns can be computed memory-efficiently, i.e., within a few kilobytes. However,
to obtain the public key) , the parity-check matrix is transformed to the systematic
form � = (� |)). The specification suggests to use the Gaussian elimination algorithm
to achieve this. Applying Gaussian elimination requires to hold the complete matrix �̂

in memory, where �̂ is larger than the public key itself. For streaming single rows or
columns, a more memory-efficient approach is required.

A solution is to compute the unique matrix (∈ F (<−9)×(<−9)2 for which (�̂ = �. This
matrix (is smaller than the public key by a factor of 9/(< − 9). It can be added to the
private key which increases its size. In exchange, the public key does not need to be
stored in memory. Instead, single rows or columns of �, and thus) , can be computed
by computing the respective row or column of �̂ and subsequently computing the
product of (by the row or column of �̂. The matrix (can be computed as the inverse
of (−1 which is the leftmost (< − 9) × (< − 9) matrix of �̂. Computing the inverse via
the Gaussian elimination algorithm would require memory of size 2|(|. Instead, the
matrix can also be inverted more memory-efficiently by computing the inverse via the

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 19

LU decomposition and doing most of the computatons in-place. The required memory
to obtain (from (−1 with this approach amounts to |(| + 2(< − 9) bytes where 2(< − 9)
bytes are used to temporarily store the permutation matrix that is created by the LU
decomposition.

Table 3.8 depicts the memory that is required to compute the smaller matrix (instead
of computing the public key) by using the Gaussian elimination algorithm.

Parameter Set Compute) Compute (

mceliece348864 334,848 75,264

mceliece460896 718,848 197,184

mceliece6688128 1,391,104 349,440

mceliece8192128 1,703,936 349,440

Table 3.8: Comparison of the memory footprint (in bytes) for producing the public key)
or the matrix (, respectively. The original Classic McEliece algorithm applies
Gaussian elimination to the (< − 9) × < matrix �̂ to produce) . Computing
(instead of) to facilitate streaming the public key results in a significantly
lower memory requirement.

Table 3.9 compares the size of the Classic McEliece key pair with the size of only the
private key combined with the matrix (that is computed instead of the public key.

Parameter Set Key Pair Size Private Key + (

mceliece348864 267,572 81,268

mceliece460896 537,728 204,672

mceliece6688128 1,058,884 360,580

mceliece8192128 1,371,904 363,776

Table 3.9: Size of the Classic McEliece key pair compared to the size of the private key
and the matrix (in bytes.

In practice, the public key size dominates the memory requirements of the Classic
McEliece scheme, thus the replacement of the public key by the matrix (is a significant
reduction for the memory requirements. Since it is an unusual concept, it is explained
again without the technical details: On the side of the private key holder, the matrix (

is computed instead of the public key. On the receiving end, i.e., another party that
wants to perform the encapsulation operation, of course the public key is required. The
matrix (shall never be made public. By utilizing the matrix (, the public key can be
streamed from the private key holder, by utilizing the relationship � = (� |)) = (�̂. It
is easy to memory-efficiently compute rows or columns of the public key) from this.
In summary, this reduces the memory requirements to only handle the matrix (instead
of the whole public key (or even the somewhat larger matrix �). As an example, no
Classic McEliece key pair could be computed on a device with 256 kilobytes of RAM.
However, computing the private key and (, and subsequently streaming the public key,
is possible for both the mceliece348864 and the mceliece460896 parameter sets.

20 Development of Software Libraries
D3.1 – Design and Implementation in Software

Due to the modified encapsulation that enables streaming, the encapsulation opera-
tion can be performed on almost any embedded device since it only requires up to 3

kilobytes. This enables the use even for low-memory smartcards.

Streaming of SPHINCS+ Signatures

SPHINCS+ is a hash-based signature scheme and employs a hypertree structure that
is comparable to XMSS. The hypertree consists of multiple layers of Merkle signature
trees. These trees have WOTS+ one-time signatures at their leaves. A notable difference
to XMSS is, that the bottom layer of the SPHINCS+ hypertree employs FORS few-time
signatures at the leaves. The FORS signatures directly sign message digests, whereas
the one-time signatures in the inner Merkle trees are used to sign the next layer in the
hypertree.

The reader is referred to the round-3 supporting documentation of SPHINCS+ for
more details on the scheme9 and some familiarity with SPHINCS+ is assumed.

Parameter Set < ℎ 3 log(B) 9 E Signature Size
SPHINCS+-128f 16 66 22 6 33 16 17088
SPHINCS+-128s 16 63 7 12 14 16 7856
SPHINCS+-192f 24 66 22 8 33 16 35664
SPHINCS+-192s 24 63 7 14 17 16 16224
SPHINCS+-256f 32 68 17 9 35 16 49856
SPHINCS+-256s 32 64 8 14 22 16 29792

Table 3.10: SPHINCS+ parameter sets as proposed for NIST Round 3. The signature
size is given in bytes. Further, the parameters are listed, < is the security
parameter (in bytes), ℎ is the height of the hypertree, 3 is the number of
the layers in the hypertree, log(B) is the height of the FORS trees, 9 is the
number of the FORS trees, and E is the Winternitz parameter.

As can be seen in Table 3.10, the size of SPHINCS+ signatures is considerable with
up to almost 50 kilobytes. In the following, it is elaborated on how the signature can
be streamed.

A SPHINCS+ signature consists of multiple parts as illustrated in Figure 3.1. First,
there is the randomness ' followed by a FORS signature. The FORS signature itself
consists of 9 private key values, each combined with an authentication path in the
corresponding Merkle tree. A hypertree signature follows which consists of 3 Merkle
signatures, which each again consists of a WOTS+ signature and an authentication
path. A WOTS+ signature is the concatenation of multiple hash-chain nodes that are
computed by the WOTS+ chaining function.

Each of the described parts, in turn, consists of one or more <-byte blocks. More pre-
cisely, the randomness ', the FORS private key values, every node in the authentication
paths, as well as every hash-chain node are all separate byte arrays of size < — because

9https://sphincs.org/data/sphincs+-round3-specification.pdf

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 21

https://sphincs.org/data/sphincs+-round3-specification.pdf

R FORS FORS . . . FORS Merkle Merkle . . . Merkle

priv. key node node . . . node

node node . . . node node node . . . node

< byte

< byte < byte

< byte < byte

authentication path

WOTS+ signature authentication path

Figure 3.1: SPHINCS+ signature format.

they are each the result of an invocation of the instantiated hash functions that output
< bytes. This makes it natural to split signatures into chunks of < bytes as well.

The chosen approach to enable efficient streaming of SPHINCS+ is to replace the
signature buffer with the abstract model of a buffer which is described earlier in this
section. That is, the signature buffer can be replaced by storing the currently relevant
<-byte chunk of the signature which is accessed in sequential order.

In the following, this is described in some more detail from a signer’s perspective.
Although the computations are slightly different for the verifier, it is easy to see that
the same general abstraction applies. The components of a SPHINCS+ signature are:

• ': This value is generated by combining the message with a secret PRF key and
optional randomness using a hash function. After it has been used to compute
the message digest, which is going to be signed by FORS, the value can be written
to the stream and removed from memory.

• FORS: A FORS signature consists of private keys that are released as part of the
signature and an authentication path in a corresponding Merkle tree:

• Private Keys: A FORS private key is computed by applying the PRF to the
SPHINCS+ secret key seed and the appropriate FORS address. It can be
immediately streamed out.

• Authentication Path: The authentication-path node at a given height is the
root of a subtree and can be computed with the tree-hash algorithm directly,
given that the index of the left-most leaf in this subtree is specified. In this
way it is possible to compute the nodes of the authentication path in order
and the buffer for the authentication path can be omitted. To avoid costly
recomputations of leaf nodes, the root-node computation is intertwined with
the computation of the authentication-path nodes.

• Public Key: FORS public keys are only an implicit part of the signature,
but handling them in an efficient streaming implementation warrants some
attention to avoid recomputations of nodes and memory overhead. The

22 Development of Software Libraries
D3.1 – Design and Implementation in Software

FORS root nodes are combined to form the public key by computing a
tweakable hash over the nodes. This value is then signed by the bottom
layer of the SPHINCS+ hypertree. Instead of buffering all root nodes in
order to compute the tweakable hash function, a state of the tweakable hash
function is maintained and updated with each newly computed root node,
after streaming the corresponding authentication path.

• SPHINCS+ Hypertree: The signature components of the SPHINCS+ hypertree
consist of WOTS+ signatures and nodes in the authentication paths:

• WOTS+ Signature: A WOTS+ signature consists of a number of hash-chain
nodes that are derived from the private key values and authenticates the
tree on the layer below. The computation is typically intertwined with the
computation of the WOTS+ public key that is also needed for generating
the corresponding leaf in the hypertree. In order to compute the public key,
all hash-chain nodes are computed in order. Writing out the signature thus
basically only means writing out the correct node while the public key is
computed. Finally, for computing the corresponding leaf in the hypertree,
the public key values are combined with a tweakable hash-function call.
Instead of buffering the end node of each hash chain and then applying the
tweakable hash function, the tweakable hash function can be updated after
each hash-chain end node has been computed.

• Authentication Path: This is analogous to FORS authentication paths.

Since all elements of the signature can be computed in order, the signature buffer can
be reduced to just processing the current chunk of < bytes.

By applying these changes throughout the reference code, the total (peak) memory
usage does not exceed 3 kilobytes for any parameter set for the three operations key
generation, sign, verify, as can be seen in Table 3.11. In contrast, the reference and pqm4
implementation each additionally require memory for the signature buffer (depicted as
+sig). The streaming implementation can freely choose a buffer size for the signature
(at least < bytes, depicted as +buf).

The streaming approach has been integrated into a proof-of-concept TPM 2.0 imple-
mentation to show the feasibility of the approach and evaluate it in the presence of
I/O overhead. Use cases like secure boot and secure firmware updates can be made
feasible with a SPHINCS+ streaming implementation since the originally prohibitive
memory requirements due to the large signatures are lifted. The verification operation
is (compared to signature and key generation) reasonably efficient on embedded devices
if there are no strict requirements for the verification time. There are no significant
slowdowns in the streaming implementation aside from possibly increased I/O which
is outside the scope of the streaming SPHINCS+ code.

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 23

Parameter Set Sig.
Key Generation Signing Verification

ref. pqm4 strm. ref. pqm4 strm. ref. pqm4 strm.
sphincs-sha256-128f-robust 17,088 3688 2256 1960 3176+ sig. 2320+ sig. 2000+ buf. 3344+ sig. 2808+ sig. 1728+ buf.
sphincs-sha256-128s-robust 7856 3984 2472 2056 3264+ sig. 2544+ sig. 2088+ buf. 2592+ sig. 2112+ sig. 1656+ buf.
sphincs-sha256-192f-robust 35,664 6536 3680 2192 5336+ sig. 3832+ sig. 2264+ buf. 4848+ sig. 4040+ sig. 1856+ buf.
sphincs-sha256-192s-robust 16,224 6928 4104 2336 5472+ sig. 3992+ sig. 2360+ buf. 4728+ sig. 3376+ sig. 1888+ buf.
sphincs-sha256-256f-robust 49,856 10456 5792 2456 8272+ sig. 5760+ sig. 2512+ buf. 7424+ sig. 5656+ sig. 2088+ buf.
sphincs-sha256-256s-robust 29,792 10816 6064 2584 8400+ sig. 5904+ sig. 2616+ buf. 7424+ sig. 5360+ sig. 1960+ buf.
sphincs-sha256-128f-simple 17,088 2904 2104 1632 2392+ sig. 2168+ sig. 1688+ buf. 2592+ sig. 2656+ sig. 1384+ buf.
sphincs-sha256-128s-simple 7856 3096 2432 1736 2480+ sig. 2392+ sig. 1768+ buf. 1904+ sig. 1960+ sig. 1296+ buf.
sphincs-sha256-192f-simple 35,664 5072 3520 1840 3872+ sig. 3560+ sig. 1896+ buf. 3816+ sig. 3880+ sig. 1480+ buf.
sphincs-sha256-192s-simple 16,224 5464 3944 1992 4008+ sig. 3832+ sig. 2016+ buf. 3160+ sig. 3216+ sig. 1456+ buf.
sphincs-sha256-256f-simple 49,856 8160 5512 2080 5872+ sig. 5592+ sig. 2104+ buf. 5424+ sig. 5488+ sig. 1876+ buf.
sphincs-sha256-256s-simple 29,792 8416 5896 2216 6000+ sig. 5736+ sig. 2232+ buf. 5024+ sig. 5080+ sig. 1868+ buf.
sphincs-shake256-128f-robust 17,088 4052 2012 2336 3544+ sig. 2176+ sig. 2392+ buf. 3708+ sig. 2556+ sig. 2208+ buf.
sphincs-shake256-128s-robust 7856 4352 2336 2432 3632+ sig. 2288+ sig. 2464+ buf. 2956+ sig. 1860+ sig. 2120+ buf.
sphincs-shake256-192f-robust 35,664 6892 3436 2560 5696+ sig. 3576+ sig. 2632+ buf. 5204+ sig. 3788+ sig. 2328+ buf.
sphincs-shake256-192s-robust 16,224 7288 3856 2704 5832+ sig. 3736+ sig. 2728+ buf. 4980+ sig. 3124+ sig. 2176+ buf.
sphincs-shake256-256f-robust 49,856 10912 5436 2816 8624+ sig. 5504+ sig. 2872+ buf. 7880+ sig. 5404+ sig. 2448+ buf.
sphincs-shake256-256s-robust 29,792 11168 5816 2944 8752+ sig. 5648+ sig. 2976+ buf. 7772+ sig. 4996+ sig. 2320+ buf.
sphincs-shake256-128f-simple 17,088 3476 2012 2104 2968+ sig. 2068+ sig. 2144+ buf. 3164+ sig. 2556+ sig. 1960+ buf.
sphincs-shake256-128s-simple 7856 3776 2336 2200 3056+ sig. 2288+ sig. 2232+ buf. 2468+ sig. 1860+ sig. 1800+ buf.
sphincs-shake256-192f-simple 35,664 5660 3436 2320 4464+ sig. 3468+ sig. 2368+ buf. 4404+ sig. 3788+ sig. 1956+ buf.
sphincs-shake256-192s-simple 16,224 6056 3856 2464 4600+ sig. 3736+ sig. 2488+ buf. 3748+ sig. 3124+ sig. 1936+ buf.
sphincs-shake256-256f-simple 49,856 8644 5436 2568 6464+ sig. 5504+ sig. 2592+ buf. 6012+ sig. 5404+ sig. 2072+ buf.
sphincs-shake256-256s-simple 29,792 9008 5816 2696 6592+ sig. 5648+ sig. 2712+ buf. 5612+ sig. 4996+ sig. 2112+ buf.

Table 3.11: Stack sizes for the sphincs-sha256-* and sphincs-shake256-* parameter
sets for the SPHINCS+ reference implementation (“ref”), pqm4/PQClean
(“pqm4”), and our streaming interface implementation (“strm.”) as well as
the corresponding signature sizes in bytes. The buffer size for our streaming
implementation can be freely chosen to a value of at least < (hash function
output size) or greater to satisfy the available memory resources.

24 Development of Software Libraries
D3.1 – Design and Implementation in Software

3.3.2 Carry-Less to BIKE faster

The Key Encapsulation Mechanism BIKE has been selected as candidate for potential
standardization after round 3 of the NIST PQC competition. We have optimized BIKE
for the ARM Cortex-M4 and the RISC-V-based VexRiscv platform and achieved new
speed records for embedded constant time implementations. Therefore, we leverage
the performance benefit of the bit-polynomial multiplication in radix-16 representation.
The full paper is available at [Che+22].

Bit-Polynomial Multiplication via Integer Multiplication.

For the acceleration, we chose an uncommon option to implement bit-polynomial
multiplication that uses integer multiplication in combination with data in a radix-16
representation. With the radix-16 representation, one expresses a degree-7 polynomial
0 =

∑7
7=0 07F

7 ∈ F2 [F] as a 32-bit integer 00 + 012
4 + 022

8 + · · · + 072
28. Multiplying

polynomials 0 · 1→ 2 in this form with integer multiplication yields:

(00 + 01 · 24 + 02 · 28 + · · · + 07 · 228) · (10 + 11 · 24 + 12 · 28 + · · · + 17 · 228)
= 0010 + (0110 + 0011) · 24 + (0210 + 0111 + 0012) · 28 + · · · + (0717) · 256

an integer where the bit of index 47 is exactly 27, and thus after masking out the other
indices remains 2 in radix-16 representation. Chen and Chou [CC21b] presented the
multiplication in radix-16 formats and applied it to multiplication in F212 and F213 , i.e.,
polynomials of 12 and 13 bits. We present the techniques for extending the method
to bit-polynomial multiplication in BIKE, including the optimization of 32-bit base
multiplication, data conversion, logic shift operation, and building multiplications for
polynomials of various sizes in the following.

Base Multiplication in Radix-16 Form.

Figure 3.2: Performing an 8-bit bit-polynomial multiplication with 32-bit integer mul-
tiplication in radix-16 form.

Figure 3.2 shows an example of an 8-bit bit-polynomial multiplication with a 32-bit
integer multiplication using the radix-16 form. Even during a multiplication of two

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 25

radix-16 values with all bits set, the carry bits do not propagate. Furthermore, this
example demonstrates that the lower half of the multiplication result can be added to
the higher half (both residing in a 32-bit register) without a prior reduction. One can
see that the pairwise sum of each nibble is capped at eight and therefore does not lead to
a carry propagation to the next nibble. This observation allows the use of the powerful
multiply-with-accumulate instruction (umlal) of the Cortex-M4 during the combination
of 16 8-bit bit-polynomial multiplications to perform one 32-bit multiplication.

The radix-16 format quadruples the size of a polynomial during computation, to
avoid this memory overhead when storing polynomials, we pack four bytes in radix-16
format in one register by shifting byte 7, 7 bits to the left.

To perform one 32-bit bit-polynomial multiplication we therefore extract four bytes
for each operand, perform 16 integer multiplications with reductions in between and
pack the result in two 32-bit registers. For the Cortex-M4 we are able to express this
operation with only 46 instructions, by using the umlal instruction as explained before
and the barrel-shifter. For our RISC-V implementation we need 89 instructions for
the same operation, because not only of the missing barrel-shifter and multiply-with-
accumulate instruction, but also are multiplications of 32-bit values expressed with two
instructions, one for the lower half and one for the upper half of the result.

Performance of BIKE KEM

Measuring the three KEM operations for BIKE demonstrates that our radix-16 multipli-
cation approach beats the current fastest implementations of BIKE on the Cortex-M4.
For the bikel1 parameter set we observe an improvement in cycles of about 13% for
the key generation and about 7% for the encapsulation. The decapsulation is about
3% slower than the FFT based approach. This is due to the many multiplications
in the decoder where input transformations can be omitted and thus the FFT based
multiplications are faster. For an implementation where code size is insignificant, one
could use the FFT based multiplication for the decoder and our radix-16 multiplication
in the key generation and encapsulation to achieve the best overall performance. The
results are shown in Table 3.12.

Table 3.12: Cycle counts for BIKE on the Cortex-M4.
Key Gen Encaps Decaps Impl

bikel1
21,137,291 2,989,187 50,832,769 Radix-16
24,935,033 3,253,379 49,911,673 FFT [CCK21]
65,414,337 4,824,059 114,592,442 portable [Ara+17]

3.3.3 Optimizing Kyber and NewHope Ciphers on RISC-V

This section covers the implementation of the polynomial arithmetic used by NewHope
and Kyber, using the standardized RISC-V ISA. This work was done as part of [Alk+20].
In Section 3.3.4, we describe the implementation of the finite field arithmetic used

26 Development of Software Libraries
D3.1 – Design and Implementation in Software

Algorithm 1: Barrett reduction on
32-bit inputs.
Input: Integer 0 < 232 (register a0)
Input: Prime ? (register a1)
Input: Integer b 232

?
c (register a2)

Output: reduced 0 < 214 (register a0)
1 mulh t0, a0, a2 // B ← 0 · b 232

?
c;

2 mul t0, t0, a1 // B ← B · ?;
3 sub a0, a0, t0 // 0← 0 − ?;

Algorithm 2: 4× interleaved Barrett
reduction on 32-bit inputs.
Input: Integer 07 < 232, with 1 ≤ 7 ≤ 4

(registers a0 to a3)
Input: Prime ? (register a4)
Input: Integer b 232

?
c (register a5)

Output: reduced 0 < 214 (register a0)
1 mulh t0, a0, a5 // first batch;
2 mulh t1, a1, a5 // second batch;
3 mulh t2, a2, a5 // third batch;
4 mulh t3, a3, a5 // forth batch;
5 mul t0, t0, a4 // first batch;
6 mul t1, t1, a4 // second batch;
7 . . .;
8 sub a0, a0, t0 // first batch;
9 . . .

for the coefficients of the polynomials. Section 3.3.5 follows with details on the NTT
implementation and related operations on polynomials.

3.3.4 Finite Field Arithmetic in Kyber and NewHope

The reference implementations of both Kyber and NewHope, use two reduction algo-
rithms for multiplication and addition/subtraction to be able to make use of specific
16-bit operations. The RISC-V ISA, however, does not support 16-bit arithmetic opera-
tions. The bulk of the arithmetic in Kyber and NewHope concerns polynomials that
have 256, 512, or 1024 coefficients, each of which being an element in ℤ? with either
a 14-bit (? = 12289) or a 12-bit (? = 3329) prime. To avoid the need for handling
underflows during the Montgomery reduction step, the reference implementations use
a signed 16-bit integer representation. This approach does not lend itself well to the
RISC-V ISA, as the RISC-V does not feature a sign-extension operation.

A 32-bit reduction algorithm is the better choice for the RISC-V platform, as it features
an instruction that returns the high 32-bit of a 32 × 32-bit multiplication. This can
effectively be used to to remove shifting operations during the modular reduction. This
approach lends itself well to a 32-bit Barrett reduction for a better fit to the target
ISA, as shown in Algorithm 1, requiring only three instructions. Furthermore, unlike
the Montgomery reduction, this avoids the need for any base transformation of the
coefficients.

The instructions of the reduction may block deeper processor pipelines considerably, as
each instruction depends on the result of its predecessor (see Algorithm 1). This usually
blocks the next instruction until the current instruction is retired, unless the processor
supports some form of pipeline bypass. The RISC-V ISA, however, features a large
number of registers, which allows for some instruction interleaving and considerably
alleviating the problem. Algorithm 2 shows in abbreviated form the interleaving of the
execution of four independent reductions to avoid pipeline stalls. This optimization is

Development of Software Libraries
Software Implementation and Optimization of PQC Algorithms 27

1 2 3 4

5 6 7 8

9 10 11 12

Figure 3.3: The order of butterfly operations for an NTT with three merged layers.

not relevant for RISC-V CPUs with shorter pipelines, but does not harm the performance,
as the number of instructions remains the same as with four consecutive reductions.
The same optimization can also be applied to the polynomial multiplication, addition,
and subtraction.

3.3.5 Number Theoretic Transform

Both the NewHope and Kyber ciphers make heavy use of the NTT, which is used to speed
up polynomial multiplication. A common measure to reduce the number of memory
loads and stores in software implementations is the merging of several layers of the
NTT. The NTT transformation requires powers of the primitive n-th root of unity during
butterfly operations, which are called twiddle factors, which are usually precomputed
and stored in memory. In unmerged implementations one pair of coefficients is loaded
from memory, the appropriate twiddle factor from memory is loaded, the butterfly
operation is performed, and the result is stored. In merged implementations, as
illustrated in Figure 3.3, the number of loaded pairs and butterfly operations per
merged layer is doubled, i.e., for : layers, 2: coefficients and 2: − 1 twiddle factors are
loaded and 2: · : butterfly operations can be performed before storing the results. This
optimization lends itself well to the RISC-V ISA as it features a sufficient amount of
registers to merge up to three layers, i.e., eight coefficients are processed with twelve
butterfly operations before the next set is loaded. Four butterfly operations can further
be interleaved to further avoid pipeline stalls as described above.

A moderate amount of code unrolling can be employed, e.g., to enable interleaving.
But due to the high number of registers of the RISC-V platform, unrolling is not necessary
to free registers otherwise used for counters. Accordingly, using a looped approach for
the iteration through the merged layers can still be used to reduce the code size.

3.4 Design and Implementation of PQC-Based Protocols

Existing cryptographic protocols are built with classic algorithms like RSA and elliptic-
curve-based cryptosystems in mind. In principle PQC algorithms can replace those
by replacing classic signature schemes with PQC schemes, and by replacing classic

28 Development of Software Libraries
D3.1 – Design and Implementation in Software

public-key-encryption and key-exchange schemes with PQC KEMs. In practice there
are some challenges and considerations. In the following, this is evaluated for the
widely deployed X.509 standard and the TLS protocol. The integration of PQC into
X.509 certificates plays a crucial role for the Public Key Infrastructure (PKI)-based
authentication in many cryptographic protocols like TLS. Different approaches and
considerations are presented.

First, some details of the X.509 standard and then the TLS 1.3 protocol are presented
as far as it is necessary for this report. Then, different aspects of PQC integration are
covered and the current state in research and in open source libraries is explored. Since
TLS uses the X.509 standard in its handshake protocol, some aspects are overlapping
between the two standards.

3.4.1 X.509 Certificates

RFC 528010 describes X.509 v3 certificates and X.509 v2 certificate revocation lists for
use in the internet in the context of PKIs. The primary use of X.509 certificates is to
authenticate an entity by creating a binding between the provided public key and the
subject of the certificate.

The ASN.1 syntax is used to describe the format of a certificate:
Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3
}

A certificate consists of a SEQUENCE of the three fields tbsCertificate, signatureAlgo-
rithm, and signatureValue where the signatureValue field contains the signature that
authenticates the certificate.

The SubjectPublicKeyInfo field and its subfields are of particular interest.
SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

10https://datatracker.ietf.org/doc/html/rfc5280

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 29

https://datatracker.ietf.org/doc/html/rfc5280

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

Here the algorithm field contains an Object Identifier (OID) that uniquely identifies
the used public-key algorithm. The subjectPublicKey field contains the public key itself
as a BIT STRING field which can in itself contain an ASN.1 structure.

3.4.2 TLS 1.3

The Transport Layer Security Protocol (TLS) is used to establish secure connections
over TCP/IP. Connections made with TLS 1.3 provide confidentiality, authenticity, and
integrity. TLS is divided into the record protocol and the handshake protocol. The hand-
shake protocol is responsible for the setup of the TLS connection, i.e., authenticating
the server and optionally the client, as well as exchanging encryption keys.

Public keys for the key exchange are transmitted in the Key Share Extension, an
extension that can be sent in the Client Hello and the Server Hello message. It is used
to convey the (EC)DHE key share of the respective party. The key share consists of a
named group and the (EC)DHE public key. A key share can at most be 216 − 1 bytes
long. The key shares are subsequently used to derive a shared secret and use it in the
TLS 1.3 key schedule.

With the use of signature algorithms, a server – and optionally the client – authenticate
themselves. The Certificate Verify message follows after the Certificate message and
proves the possession of the private key that corresponds to the public key in the
certificate by including a signature over the hash of the transcript of sent handshake
messages. A signature in this message can at most be 216 − 1 bytes long. For the
corresponding public key in the certificate, there is no such limitation, however, the
length of a certificate chain is limited to 224 − 1 bytes in the TLS 1.3 handshake.

3.4.3 Existing PQC Protocol Approaches and Implementations

There are many different drafts and proposals to adapt the TLS and X.509 protocol to
incorporate new PQC schemes. A selection of relevant approaches is presented here.

TLS

While there is substantial work for TLS 1.2 as well, the focus in the following is on
TLS 1.3. The new TLS 1.3 version is expected to be more relevant in the future, even
though, TLS 1.2 is still used, and even though there are also proposals to change TLS
1.2, e.g. [CC21a].

Quantum Safe Cryptography Key Information [Vre+22] This draft addresses the
binary representation of PQC keys. Without a defined format for keys, their serialization
and encoding formats, there can be no interoperability. The draft further addresses
key compression formats. In order to make the keys addressable, OIDs are assigned for
key algorithms as well as key parameters.

30 Development of Software Libraries
D3.1 – Design and Implementation in Software

A Transport Layer Security (TLS) Extension For Establishing An Additional Shared
Secret [SS17] The idea in this draft is to add an additional key share extension, named
additional_key_share. The extension can be optionally sent and contains an up to
216 − 1 byte public key or ciphertext. The key schedule is additionally extended by
HKDF-Extract and HKDF-Expand calls to incorporate the additional shared secret.

Hybrid key exchange in TLS 1.3 [SFG22] This draft aims to add hybrid key exchange
methods while staying close to the TLS 1.3 key exchange to avoid changing existing
data structures. The public keys and ciphertexts are respresented as a KeyShareEntry
which is up to 216 − 1 bytes. Combining the schemes is done by concatenation, i.e.,
two shared secrets are simply concatenated and then inserted into the TLS 1.3 key
schedule (in place of the (EC)DHE shared secret). Each new hybrid key exchange
combination is viewed as a new key exchange method from the protocol’s view. Design
goals of the approach are backwards compatibility, high performance, low latency, no
extra round trips, and minimal duplicate information. However, the proposal has the
drawback of duplicate shares if an algorithm is offered in two different combinations.
An experimental implementation of this approach is available as an OpenSSL fork by
the Open Quantum Safe project11 [Ste+].

Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) version
1.3 [Why+17] This is another draft that aims to include hybrid key-exchange schemes
into TLS 1.3. The newly proposed key exchange algorithms are treated as (EC)DH
groups as much as possible, i.e., a new PQC KEM is added as a group. The keys and
ciphertext are again conveyed via the KeyShareEntry struct that is already defined in TLS
1.3 and as for some of the other presented drafts, the individual keys are concatenated
and used instead of the (EC)DHE shared secret. Some additional logic is added in order
to negotiate the hybrid key exchange and no restrictions are made on which algorithms
or how many algorithms are combined for the hybrid key exchange. Further, the draft
takes care to only include key-share material once, even if it appears in multiple hybrid
key-exchange combinations.

Hybrid ECDHE-SIDH Key Exchange for TLS [KK18] This is a specific proposal to inte-
grate two specific key exchange combinations: X25519 with SIDH503 and X448 with
SIDH751. As for the Hybrid key exchange in TLS 1.3 [SFG22], the shared secret is
derived by concatenating the individual shared secrets of the constituent algorithms
and using it in place of the (EC)DHE shared secret. The draft defines new groups for the
proposed key exchange combinations, as well as a format for the SIDH key exchange.

KEM-based Authentication for TLS 1.3 [Cel+22] The KEM-based Authentication for
TLS 1.3 draft is based on the research on KEMTLS, a TLS variant without handshake
signatures [SSW20], [SSW21]. The basic idea is that server and client certificates make
use of KEMs instead of signatures, i.e., static long-term KEM keys are used instead of
signature keys. This is in some aspects similar to the old (TLS 1.2 and below) RSA key
11https://github.com/open-quantum-safe/openssl

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 31

https://github.com/open-quantum-safe/openssl

exchange. When exchanging a secret by encapsulating with the peer’s long-term public
key, the peer is implicitly authenticated by being able to decapsulate the ciphertext.
By using an additional ephemeral KEM key in the handshake, forward-secrecy can be
achieved. KEMTLS also describes an abbreviated handshake when the server’s public
key is already known. In this case the client can directly send the encapsulation to the
server in a ClientHello extension.

X.509

In the following, relevant approaches to integrating PQC into X.509 are presented.

Algorithms and Identifiers for Post-Quantum Algorithms [Mas+22] The draft aims
to specify post-quantum signature algorithms for the use in the internet X.509 public
key infrastructure. It will reference NIST standards, once finished, and also use the
OIDs that will be specified by NIST. The draft will specify ASN.1 public and private key
encodings, as well as the ASN.1 encoding of the signature value.

Algorithm Identifiers for NIST’s PQC Algorithms for Use in the Internet X.509 Public
Key Infrastructure [Tur+22] Analogously to [Mas+22], this draft aims to specify post-
quantum KEM algorithms for the use in the internet X.509 public key infrastructure.
Likewise, it will refer to the NIST standard and provide the respective encodings for
the ASN.1 public and private key.

Composite Schemes For Use In Internet PKI This paragraph handles the related
drafts Composite KEM For Use In Internet PKI [OG22], Composite Encryption For Use In
Internet PKI [OGM22], Explicit Pairwise Composite Keys For Use In Internet PKI [OPK22],
and Composite Signatures For Use In Internet PKI [OP22]. All of these drafts have in
common, that a composite approach for combining multiple algorithms is followed.
Composite means, that the structures for the signatures and ciphertexts and public
and private keys appear as a single entity from the protocol’s view, but the internal
structure is composed of multiple different algorithms. In [OPK22], each combination
of different keys is assigned its own OID, and ASN.1 structures for the combinations
are defined. Likewise, this is done for the other aspects of composite post-quantum
algorithms in [OG22], [OGM22], [OP22]. The combinations themselves are generic
in the way, that different algorithms are combined in identical ways. A specific set of
algorithms may be identified by an OID (called explicit variants in the drafts), but may
also be generically combined by specifying the algorithms and parameters. In the new
draft Explicit Pairwise Composite Keys For Use In Internet PKI [OMG22], that aims to
replace [OPK22], feedback from the LAMPS IETF working group that might want to
adopt the draft is addressed, where no generic algorithm combinations are allowed,
but only the ones that can be identified by OIDs.

Non-Composite Schemes For Use In Internet PKI The draft Non-Composite Hybrid
Authentication in PKIX and Applications to Internet Protocols [BGJ22a] proposes a non-

32 Development of Software Libraries
D3.1 – Design and Implementation in Software

composite approach to combine multiple algorithms and gives an overview of hybrid
(multi-algorithm) authentication. The draft Related Certificates for Use in Multiple Au-
thentications within a Protocol [BGJ22b] in contrast makes an explicit proposal for a
new CSR attribute, bindingRequest, and a new X.509 certificate extension. With the
BoundCertificates extension, multiple certificates are bound together. As an example,
when issuing a PQC certificate, the extension can be used, to provide additional in-
formation to tie the PQC certificate to a classical certificate. Issues regarding the two
prominent protocols that make use of certificate-based authentication, TLS 1.3 and
IKEv2, are also addressed in the draft.

Other

It shall be briefly noted that there are many projects that cover other common protocols
as well that have not been a focus in this project. There is substantial work for the VPN
protocol12,13,14,15, the SSH protocol16 [CPS19a], and others like PQC approaches to
Blockchains [Das+20].

3.4.4 Challenges regarding the Integration of PQC in TLS and X.509

For X.509 there exist no principle obstacles to including new PQC schemes from a
technical point of view. The ASN.1 syntax is quite flexible and allows for arbitrary-sized
keys, ciphertexts, and signatures. However, a consensus has to be reached regarding
the transition from the classical era to the post-quantum era. One widely discussed
approach is to make use of hybrid algorithms where the challenge is to find consensus
on how to combine them (e.g. composite or non-composite and through what specific
mechanism). The deployment of PQC or classic-PQC-hybrid certificates can only start
when standards are finished and OIDs are assigned to algorithms.

For TLS 1.3 there exist some more challenges from a technical point of view. Generally,
the TLS 1.3 standard is flexible through the use of defining new extensions. However,
it has not been written with post-quantum cryptography in mind. Instead, the key
exchange is tailored to the (EC)DHE key exchange variants, as can be seen in the naming
of the respective key share extension. While signature algorithms in the post-quantum
world behave like signatures in the pre-quantum world, NIST will standardize KEMs
which is a different kind of algorithm than a key agreement algorithm like (EC)DHE.
Further, the increased sizes of PQC algorithms have not been taken into account.

Public Key Sizes in TLS 1.3. Key shares in TLS 1.3 only allow up to 65,535 bytes.
This makes it impossible to directly include algorithms like Classic McEliece with
considerably larger keys [CPS19b].

12https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/
quasimodo

13https://pq-vpn.de/
14https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-multiple-ke/
15https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-intermediate/
16https://datatracker.ietf.org/doc/html/draft-kampanakis-curdle-pq-ssh-00

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 33

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/quasimodo
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/quasimodo
https://pq-vpn.de/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-multiple-ke/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-ikev2-intermediate/
https://datatracker.ietf.org/doc/html/draft-kampanakis-curdle-pq-ssh-00

Signature Sizes in TLS 1.3. For X.509 certificate chains there is a length limitation
of 224 − 1 bytes, however, this is not a practical limitation and is large enough to
contain many certificates with signatures of any of the round 2 submissions. In contrast,
signature sizes in the TLS 1.3 CertificateVerify message are limited to 216 − 1 bytes.
Some signature schemes, for example Picnic-{L3,L5}-{FS,UR}, have signature sizes
larger than that.

Implementation-related Issues for TLS 1.3 libraries. In [CPS19b] it is also explored
what the practical limits in OpenSSL 1.1.1’s TLS 1.3 implementation are. That means,
while the specifications define a maximum size for certain fields, the OpenSSL im-
plementation, or any other TLS implementation for that matter, can have further
restrictions due to code design choices. Since classic signature and key exchange
algorithms have sizes far smaller than what some PQC algorithms offer, large sizes
are not as thoroughly tested and supported. As an example, the authors had to re-
solve an excessive message size error that occured when sending a ServerHello message
containing a FrodoKEM-1344-{AES,SHAKE} key. The internal buffer that holds the
ServerHello message is constrained to 20,000 bytes but could simply be increased to
accommodate for the larger sizes. Further, the authors note that the certificate message
that contains all sent X.509 certificates, is limited to 102,400 bytes. While the limit
is generous for classic cryptography, some Rainbow parameter sets produce larger
keys than this limit. The authors were able to raise the limit to the protocol’s limit of
224 − 1 bytes to resolve the problem. Another restriction is imposed on the maximum
signature size in the CertificateVerify message and only signatures up to 214 bytes can
be handled by OpenSSL 1.1.1. Again, raising this value to the protocol’s maximum size
of 216 − 1 resolves the issue. However, the authors had to increase the corresponding
2-byte-length field to 3 bytes in order to accommodate for all PQC schemes. This is a
change to the TLS 1.3 specification and thus not a fix on the implementation level.

3.4.5 Classic McEliece Streaming in TLS 1.2

The proof-of-concept TLS 1.2 implementation in the paper [RKK21] has been imple-
mented as its own cipher suite to demonstrate the real-world implications of the stream-
ing implementation. The details of the algorithms of the streaming implementation
itself can be read up upon in the paper, see [RKK21], or in the WP 2 report [MM22].

In the following the integration into TLS 1.2 is detailed. In order to increase the
comprehensibility of the explanations, Figure 3.4 depicts an overview of the messages
that are sent in a TLS 1.2 handshake.

To integrate Classic McEliece as a new key exchange algorithm, we defined a new
cipher suite with Classic McEliece as the key exchange algorithm. The key is supposed
to be ephemeral,17 i.e., for each new connection, a new Classic McEliece key pair
shall be used. A privately defined identifier for the cipher suite is used, that is not
interoperable due to lack of standardization and thus omitted here. The key exchange

17The new algorithm supports the use of ephemeral keys, however it is up to the server to generate a new
key for each connection.

34 Development of Software Libraries
D3.1 – Design and Implementation in Software

Client Server

ClientHello -------->
ServerHello

Certificate*
ServerKeyExchange*

CertificateRequest*
<-------- ServerHelloDone

Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->

[ChangeCipherSpec]
<-------- Finished

Application Data <-------> Application Data

* Indicates optional or situation-dependent messages that are not
always sent.

Figure 3.4: Message flow for a full handshake. Source: https://www.rfc-editor.
org/rfc/rfc5246

is based on the RSA key exchange, and a KEM-DEM construction is used to convert the
KEM to a PKE.

1. The client sends the ClientHello message and includes the identifier for the Classic
McEliece cipher suite.

2. The server accepts the Classic McEliece cipher suite and replies with an appropri-
ate ServerHello message.

3. In the ServerKeyExchange message, the server sends the Classic McEliece public
key. In order to do so, the server first generates the extended private key. Then,
the server sends chunks of single columns of the public key to the client, until all
columns have been sent. The methods are described in detail in Section 3.3.1.

4. The client receives the columns of the public key and consumes each column and
updates its internal state of the syndrome computation. After the last column
has been received, the client possesses a shared secret and the ciphertext that
corresponds to the encryption under the server’s public key of that shared secret.
Then the client generates a 48-byte premaster secret, analogous to the RSA
key exchange, and uses the shared secret as an AES-GCM-256 key to encrypt

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 35

https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246

the premaster secret. The client sends the encrypted premaster secret in the
ClientKeyExchange message.

5. The server is able to decrypt the encrypted shared secret and uses it as AES-GCM-
256 key to decrypt the encrypted premaster secret. Now both parties can form
the same master key from the premaster secret.

6. The handshake finishes and both parties can send encrypted application data.

The client, as well as the server, have successfully been run on an ARM Cortex-M4
board18, featuring 256 kB RAM. For the experiments, the parameter set mceliece348864
has been chosen which has a public key size of 261,120B. The implementation is based
on the mbedTLS library19. The certificate chain is a full post-quantum SPHINCS+-256f
certificate chain. This experiment demonstrates, that post-quantum cryptography can
be used on embedded devices, even if the public-key sizes seem prohibitive.

3.4.6 SPHINCS+ and Streaming TPM 2.0

The streaming approach for SPHINCS+ signatures in Section 3.3.1 has been inte-
grated into the TPM 2.0 reference implementation20 by Microsoft. Data structures for
SPHINCS+ signatures and commands for generating keys and signatures have been
added.

In order to send commands to the TPM and to receive its responses, we implemented
a variant of the TIS protocol. TIS defines a 24 bit address space that is mapped to
control registers and data buffers inside the TPM. Read and write operations on specific
addresses are used to transfer commands and data to the TPM, to receive responses
from it, and to initiate the execution of commands.

The specification describes a simple SPI-based protocol for implementing read and
write operations for TPMs that are not directly connected to a memory bus. Messages
in this SPI protocol start with a byte that uses the first bit to indicate whether a read or
write operation is performed and the remaining 7 bit to define the length of the data in
bytes. This initial byte is followed by a 24 bit address indicating the source (for a read
operation) or destination (for a write operation). After this, data is transferred.

The host system initiates all communication with the TPM and polls a 32 bit status
register using the SPI-based protocol to detect if the TPM is ready to receive commands
or if a response is ready. We only implemented a minimal subset of the address space
that is defined in the TIS specification. The two most important addresses are the 32 bit

status register STS at address 000018h and the 32 bit FIFO command-and-response
register DATA_FIFO at address 000024h. Specific bits of the STS are used by the
TPM to communicate its readiness to receive commands or transmit responses as well
as for the host system to initiate the execution of a previously written TPM command.

We propose an extension to this communication protocol for the streaming of data
between the host and the TPM. We extend the TIS interface by two addresses, the
18The precise model is the STM32F429ZI.
19https://github.com/Mbed-TLS/mbedtls
20https://github.com/microsoft/ms-tpm-20-ref/

36 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://github.com/Mbed-TLS/mbedtls

32 bit IOSTREAM FIFO register at address 000030h for the streaming of data and the
32 bit STREAMSIZE register at address 000040h to communicate the size of the data
to be streamed. The STS register is polled by the host platform regularly. Several of its
bits are marked as reserved by the TIS specification. We decided to use two of those
reserved bits to signal that the TPM is ready to send (STS bit 23) or receive (STS bit
24) data. If one of these bits is set when the host system reads the STS register, it reads
out the STREAMSIZE register, which holds the number of bytes that the TPM is able
to send or receive. The data is then read from or written to the IOSTREAM register,
which acts as a FIFO. This helps to reduce additional polling during streaming, since
the host system is already polling the STS register during the execution of any TPM
command to detect if a response is ready.

An alternative would be to formalize the sequence of streaming messages in a state
machine and to issue special commands asking for further data or to transmit data
via the DATA_FIFO register. This approach however would introduce a significant
overhead in transmitted data and all data would have to pass through the serialization
and deserializing layers of the TPM firmware. Furthermore, the implementation of a
cryptographic scheme using such a state-machine-based communication layer would
require significant changes to the program flow into a state-machine as well instead
of being able to handle I/O transparently during the cryptographic computations as
described in 3.3.1 for SPHINCS+.

We used the SPI controller (in the SPI “slave” role) of the STM32F4 SoC to implement
the TIS protocol. Our implementation is driven by an interrupt service routine that
is triggered every time a byte is received on the SPI bus. The interrupt operates a
small state machine that handles writing to and reading from the available addresses,
including the streaming of signature data. This approach results in an interruption of
the code for every byte that is transferred. These frequent interrupts could be avoided
using a dedicated hardware implementation of the TIS protocol on an actual TPM.

For our measurements with the TPM integration we used a Raspberry Pi 4 Model B
in the role of the host system, because it provides an SPI controller for communication
with our TPM prototype.

Table 3.13 depicts measurements that have been taken for that setup.

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 37

Parameter Set

Key Generation Signing Verification
Embedded Host Embedded Host Embedded Host

strm. TPM I/O total strm. TPM I/O total strm. TPM I/O total
[mcyc] [mcyc] Δ [s] [mcyc] [mcyc] Δ [s] [mcyc] [mcyc] Δ [s]

128f-robust 55.0 60.5 9.1% 0.531 1280 1960 34.9% 11.8 82.7 470 82.4% 2.90

128s-robust 3520 3870 9.1% 23.3 26,400 29,500 10.3% 176 27.8 206 86.5% 1.33

192f-robust 81.8 91.3 10.4% 0.727 2160 3580 39.8% 21.4 123 928 86.8% 5.63

192s-robust 5240 5840 10.4% 35.0 48,400 54,600 11.4% 326 44.3 406 89.1% 2.52

256f-robust 300 330 9.0% 2.17 6120 8340 26.7% 49.8 177 1320 86.6% 7.98

256s-robust 4800 5280 9.0% 31.6 58,900 65,800 10.5% 392 90.0 767 88.3% 4.67

128f-simple 27.3 29.7 8.2% 0.340 640 1250 48.9% 7.54 39.8 420 90.5% 2.61

128s-simple 1750 1900 8.2% 11.5 13,300 14,800 10.2% 88.2 13.6 189 92.8% 1.23

192f-simple 40.2 44.4 9.6% 0.447 1080 2360 54.3% 14.1 58.4 850 93.1% 5.17

192s-simple 2570 2840 9.6% 17.1 24,400 27,700 11.6% 165 21.2 386 94.5% 2.40

256f-simple 106 120 10.9% 0.914 2230 4110 45.8% 24.6 60.6 1180 94.9% 7.14

256s-simple 1700 1910 10.9% 11.6 22,000 25,800 14.7% 154 28.9 689 95.8% 4.21

Table 3.13: Performance data for SPHINCS+ key generation, signing, and verification on the embedded device and on the host. For
the embedded device, we list the cycle counts of the reference implementation including the streaming interface as “strm.”
in mega cycles, the integration of SPHINCS+ into the TPM prototype as “TPM” in mega cycles, and the communication
overhead, i.e., the difference between the two in percent, as “I/O Δ”. For the host, we list the overall wall-clock time from
issuing a TPM command until its completion (including I/O) as “total” in seconds.

38
D

evelopm
entofSoftw

are
Libraries

D
3.1

–
D

esign
and

Im
plem

entation
in

Softw
are

3.4.7 Stateful Hash-Based Signature Schemes

This section discusses the challenges of deploying stateful hash-based signature (HBS)
schemes on an abstract level. Further, an assessment is made as to whether stateful HBS
are generally recommendable. The use case for a certification authority is considered.

Hash-based cryptography is an obvious candidate for post-quantum cryptography
since hash functions are considered secure against quantum computer aided attacks.
For example, the security of the hash-based signature schemes XMSS and SPHINCS+
only rely on the properties of the underlying hash functions. In general, this leads to
less assumptions than is typically the case for signature schemes: Signature schemes
that are able to process arbitrary-length input, also depend on the security of the used
hash functions.

Stateful HBS schemes like XMSS21 and LMS22, however, introduce a new problem:
the state. In contrast to typical signature schemes, the private key changes after each
signature to reflect the change in some internal state of the scheme. For the two
mentioned schemes, the state amounts to some index to keep track of which one-time
signatures have already been used. It would be fatal to reuse the same state for two
signatures, as this would lead to the generation of a second one-time signature with the
same one-time signature key pair. This directly reduces the security, or can completely
break the scheme, such that an adversary can forge signatures.

There are a few possible pitfalls when using stateful HBS schemes. Some are easily
avoided, and some are more difficult to adequately address.

1. Virtual Machines. Virtual machines offer the possibility to clone an entire
(virtual) machine with its exact state. For stateful HBS schemes, this can be
problematic. When cloning the VM, there exist two identical private keys with an
identical state that are not necessarily aware of the second copy. It is non-trivial
to assure that each state is only used once during the key lifecycle of both clones.

2. Updating Non-Volatile Memory. From a very high level perspective, memory can
be divided into volatile and non-volatile memory. Volatile memory encompasses,
for example, the RAM and the CPU registers, Non-volatile memory could be
flash or disk storage. In contrast to volatile memory, the data in the non-volatile
memory will be retained when there is no power.
For modern systems, however, there are many in-between layers of caches, online
or offline backup storage, and even software layers like file systems. Databases
and caches inside of applications can constitute another layer. Each of these
layers might be caching a private key without writing it to the next layer(s) in
the hierarchy. As an example, modern operating systems might schedule an
actual physical write operation to the non-volatile memory for another time
while transparently creating the impression on the filesystem level that the write
operation has already been carried out.
Therefore, it is non-trivial to assure that the non-volatile memory is correctly
updated with the new state. In normal operation, all of this is designed to be

21https://datatracker.ietf.org/doc/html/rfc8391
22https://datatracker.ietf.org/doc/html/rfc8554

Development of Software Libraries
Design and Implementation of PQC-Based Protocols 39

https://datatracker.ietf.org/doc/html/rfc8391
https://datatracker.ietf.org/doc/html/rfc8554

transparent from a software perspective. However, events like a power shutdown
can pose serious risks as they can cause inconsistencies across the different layers.

3. Backups. Backups are closely related to the previous point but deserve special
attention. All the same concerns that hold for non-volatile memory in general
also hold for backups.

For stateless keys, a simple backup would suffice. For stateful keys, additonal care
has to be taken, such that restoring the backup does not lead to a reused state.
Therefore, either a new backup has to be created after each sign operation, or
the backup recovery has to infer the state from some additional source. Further,
similarly to cloning a VM, a backup may not be used to restore the same state on
different machines. In any case, the state in the keys introduces new challenges
for restoring backups.

4. Abortion of a Signature Generation Operation. When a signature generation
operation is in progress, it has to be taken care that it is only then output, after
the state is updated. If one fails to do so, a sudden abortion of the operation
can lead to the private key not being updated. With the signature (or parts of it)
already output, that means the state will be used twice.

5. Concurrency. In a setting where a high throughput of signatures is desired, it
might be beneficial to offload the work to multiple different cores or devices.

In the typical scenario of stateless keys, all devices could simply share the same
key. For stateful schemes, additional care has to be taken, such that no state is
used twice. Additional overhead for the coordination is needed.

Also see NIST’s security considerations regarding stateful HBS in [ST20].
Apart from pitfalls that directly affect the security of the schemes, there are other

aspects that might make stateful HBS schemes unattractive. As an example, integrating
stateful HBS schemes into a crpytographic library or protocol can be challenging.
Something as trivial as having a const-qualifier for the private key in the API functions
can make the integration impossible without changing the API. In contrast to other
signature schemes, the private key will change after the signature generation operation,
thus the const-qualifier prevents the integration. Further, for stateful schemes, there is
a (possibly very low) maximum number of signatures that can be created with a given
key. Integrating this into the key life-cycle management might be non-trivial, and at
least, poses a new special case that has to be handled.

For the reasons given in Items 1 to 5, the consortium comes to the same conclusion
as NIST23 and deems stateful HBS as not suitable for general use.

To address some of the issues described above, we implemented XMSS on a Hardware
Security Module (HSM). This implementation is described in Section 4.2.2.

23https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

40 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

3.5 Mixed PQ-PKI

In contrast to classic crpytography, PQC schemes have vastly differing characteristics and
it is an interesting question, whether or not those characteristics may complement each
other in certain situations. One interesting finding in [SKD20] is that the combination of
Falcon-1024 and Dilithium-IV in one certificate chain resulted in a faster TLS handshake
than using any of the algorithms alone. This is due to the difference in the sizes and
the difference in the verify and sign speed of both schemes. In this section, the mixing
of PQC schemes in certificate chains is explored.

3.5.1 Considerations for Mixed Post-Quantum X.509 Certificate Chains

This section explores mixed PQC algorithms in the X.509 PKI and focuses on the special
role of the root certificate.

Large (Root) CA Certificates Root CA certificates play a special role since they are trust
anchors that are already stored on the receiver’s device. Thus, they are typically not
part of a certificate chain when authenticating the sender. As an example, using large
Rainbow keys in root certificates would not lead to increased bandwidth requirements
since the root certificate is known to all participants. For constrained devices, it can
add the burden to store the large keys on the flash memory and load them into RAM
for validating an intermediate CA signature. However, in [Gon+21] it is already
demonstrated that rainbowI-classic can stream in the public key and the signature on
a device that utilizes only 8 kB of RAM and 8 kB of flash memory. If more than the
root CA can be omitted from the certificate chain, the same reasoning applies to the
intermediate CAs. For TLS, there is a draft24 that proposes exactly this, in order to
reduce the size of post-quantum certificate chains.

Stateful Signature Schemes in CA certificates Due to the concerns given in Sec-
tion 3.4.7 regarding stateful signatures, we do not recommend them for general use.
For XMSS and LMS, the state amounts to an integer, describing the currently active
leaf node. For each made signature, it is increased, such that each leaf node is selected
exactly once. CAs already employ strict guidelines and procedures and it is a very
controlled environment, thus, additionally managing the state in this use case can be
handled. Since public CAs already publish every issued certificate in the certificate
transparency log, it would even be feasible to extract the state from the certificate
transparency log by counting the number of issued certificates of a given CA certificate.
When issuing certificates, care has to be taken to prevent race conditions, i.e., when
two certificate requests are signed in a given time frame, the actual signing operation
has to be serialized to prevent using the same state. When used correctly, XMSS and
LMS have several advantages for CAs. Firstly, they are already standardized and their
security assumptions are well understood. Secondly, Root CAs do not typically issue
many certificates, thus a small parameter set with relatively small signatures can be

24https://www.ietf.org/id/draft-kampanakis-tls-scas-latest-02.html

Development of Software Libraries
Mixed PQ-PKI 41

https://www.ietf.org/id/draft-kampanakis-tls-scas-latest-02.html

chosen for Root CAs. CA certificates that issue a lot of end-entity certificates may have
to choose larger parameter sets, though. Thirdly, XMSS and LMS are slow when signing,
but fast when verifying. Slow signing speed is not an issue for the CAs during certificate
issuance and is only done once, whereas the fast verification benefits the clients that
verify the certificate chain. In conclusion, it might be a feasible strategy to deploy XMSS
or LMS in Root CA and CA certificates, and other signature algorithms in the end-entity
certificates, resulting in a mixed certificate chain which employs different algorithms
in different certificates.

3.5.2 Mixing PQC Algorithms in TLS

In order to better understand the practical impact of mixing different PQC algorithms,
an experiment on TLS 1.3 has been performed. The Open Quantum Safe project
maintains an OpenSSL fork25 and integrates many PQC algorithms into the OpenSSL
TLS 1.3 implementation already. The integration into OpenSSL is described in detail
in [CPS19b] and is also briefly described in this report in Section 3.4.3. With the help
of the OpenSSL fork (at commit ea1ab67), a test suite has been created that measures
TLS handshakes that utilize PQC algorithms, i.e., PQC certificate chains and PQC key
exchanges.

Test Setup and Methodology

To systematically test the impact of PQC algorithms in TLS, first, a variety of certificate
chains has been created. These certificate chains were then used in a TLS handshake
and the impact on the handshake size and speed has been recorded. The setup is
described in detail in the following.

Generating Certificate Chains Certificate chains of size three, containing a root-CA
certificate, a sub-CA certificate, and an end-entity certificate are generated. For each of
the three certificates, a different PQC signature algorithm can be chosen. However, in
order to reduce the number of certificate chains, the root CA and the sub CA certificates
are always generated with the same algorithm. To further reduce the number of
certificates to a reasonable size, not all algorithms that the OpenSSL fork offers are
considered. The list of considered signature algorithms is the following:

• dilithium2_aes, dilithium5_aes,

• falcon512, falcon1024,

• picnic3l1, picnic3l5,

• rainbowIIIclassic, rainbowVclassic, rainbowIIIcompressed, rainbowVcompressed,

• sphincssha256128fsimple, sphincssha256128ssimple, sphincssha256256srobust,
sphincssha256256frobust.

25https://github.com/open-quantum-safe/openssl

42 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://github.com/open-quantum-safe/openssl

This results in a total number of 14 · 14 = 196 different certificate chains. The selection
criteria for the signature algorithms have been:

1. Different algorithm variants are only included if they have major differences, e.g.,
the SPHINCS+ robust and simple variants have a large difference in runtime.

2. AES variants have been chosen when both AES and other variants are offered
(e.g. dilithium2_aes instead of dilithium2).

3. To reduce the number of algorithms, only level 1 and level 5 variants have been
chosen. This gives the minimum and the maximum impact of the respective
algorithms. Dilithium is an exception, since only level 2 is offered instead of level
1. Further, since Rainbow’s level 1 parameter set has been broken [Beu22] and
subsequently removed from the OpenSSL fork, level 3 is considered instead.

4. The SPHINCS+ Haraka and SHAKE256 variants have been omitted entirely, and
only the SHA256 variant is included. This already amounts to four variants which
already occupy more than a quarter of algorithms in the final list of considered
signature algorithms.

Handshake Combinations A complete PQC handshake also utilizes PQC KEMs for the
key exchange. The same criteria as for the signature algorithms are applied to the PQC
key-exchange algorithms that the OpenSSL fork offers. The key exchange algorithms
that are considered, are:

• bikel1, bikel3,

• kyber512, kyber1024,

• frodo640aes, frodo1344aes,

• hqc128, hqc256,

• ntru_hps2048509, ntru_hps40961229, ntru_hrss701, ntru_hrss1373, ntrulpr653,
ntrulpr1277,

• sntrup653, sntrup1277,

• lightsaber, firesaber,

• sidhp434, sidhp751,

• sikep434, sikep751.

Note that SIKE/SIDH have been removed in more recent versions of the OpenSSL
fork, due to a presented attack on the scheme.26 This results in a total number of
14 · 14 · 22 = 4312 different handshakes.
26https://github.com/open-quantum-safe/openssl/pull/383, also see https:

//github.com/open-quantum-safe/liboqs/pull/1272

Development of Software Libraries
Mixed PQ-PKI 43

https://github.com/open-quantum-safe/openssl/pull/383
https://github.com/open-quantum-safe/liboqs/pull/1272
https://github.com/open-quantum-safe/liboqs/pull/1272

Handshake Measurements For each of the 4312 handshakes, the handshake size, i.e.,
the data that is sent by the client and the data that is sent by the server, as well as the
speed of completing the handshake is reported. The handshakes are left to the default
behaviour of the respective OpenSSL tools. The server authenticates itself with one
of the generated certificate chains and omits the root CA, i.e., only sends the sub-CA
certificate and the end-entity certificate. The client does not authenticate itself. For the
measurements that are described in the following paragraphs, the server will always be
an instance of the OpenSSL s_server tool.

Determine Handshake Size To determine the size of the handshake, the OpenSSL
s_client tool is used to perform a handshake. The output is parsed and the size of the
handshake is recorded, divided by the data that is sent by the server and the data that
is sent by the client.

Determine Handshake Speed To measure the handshake speed, the OpenSSL s_time
tool is used to perform a handshake and measure its speed. Both, the server, and
the client, are run locally on the same system. The system features an Intel i5-8400
CPU. Each of the handshake combinations is measured for at least 15 seconds. If there
are less than 5 handshakes measured in total, the combination is tested again with
an increased time, to ensure some minimum number of measured handshakes. Each
combination is tested in two different network setups:

• Normal speed, i.e., no restrictions.

• The tool trickle27 is used which is a simple traffic shaper with which the network
speed is reduced to 256 kB/s.

By comparing the unlimited with the limited results, some conclusions can be drawn
with regards to the impact of slower connections and the sizes of the keys, ciphertexts,
and signatures.

Results

This section describes the results of the previous measurements. For the rest of the
section, the SPHINCS+ variants will be abbreviated by omitting the sha256 substring,
since only SHA-256 variants are considered. Further, sphincs is abbreviated by spx to
make it a bit shorter, E.g., sphincssha256256frobust will become spx256frobust.

Overview The total number of data sets is 3× (14 · 14 · 22) = 12936, since we measure
14 · 14 · 22 handshakes for speed, speed (with trickle), and size. Therefore, it is not
feasible to display the data in full detail. First, an impression of the overall results
is given by demonstrating each the three min, max, and median values. Table 3.14
depicts these values for the handshake size. For the handshake speeds, the same is
depicted in Table 3.15 for the unlimited variant, and in Table 3.16 for the variant that
limits speed with trickle.
27https://github.com/mariusae/trickle

44 Development of Software Libraries
D3.1 – Design and Implementation in Software

https://github.com/mariusae/trickle

Root CA Sub CA EE KEX HS Size Client Sent Server Sent
Smallest

falcon512 falcon512 falcon512 sidhp434 5596 911 4685

falcon512 falcon512 falcon512 sikep434 5614 911 4703

falcon512 falcon512 falcon512 sidhp751 6064 1145 4919
...

Median
spx256frobust spx256frobust spx256frobust kyber512 152,631 1381 151,250

spx256frobust spx256frobust spx256srobust hqc256 152,669 7826 144,843

spx256srobust spx256srobust picnic3l5 frodo1344aes 152,799 22,106 130,693
...

Largest
rainbowVclassic rainbowVclassic rainbowVclassic frodo640aes 3,887,533 10,197 3,877,336

rainbowVclassic rainbowVclassic rainbowVclassic hqc256 3,889,911 7826 3,882,085

rainbowVclassic rainbowVclassic rainbowVclassic frodo1344aes 3,911,359 22,106 3,889,253

Table 3.14: The three smallest, the three median, and the three largest measured
handshakes. Columns 1-4 depict the chosen signature and key-exchange
algorithms. The HS Size (Handshake Size) column is the sum of the Client
Sent and Server Sent columns which describe the amount of bytes that have
been sent by each party.

Root CA Sub CA EE KEX Handshakes / s

Slowest
rainbowVclassic rainbowVclassic rainbowVclassic sikep751 4.1

rainbowVcompressed rainbowVcompressed rainbowVclassic sikep751 4.15

rainbowVclassic rainbowVclassic rainbowVcompressed sikep751 4.23
...

Median
dilithium5_aes dilithium5_aes rainbowIIIclassic sidhp434 29.62

spx256srobust spx256srobust rainbowIIIclassic kyber1024 29.69

spx256srobust spx256srobust rainbowIIIclassic ntru_hrss701 29.69
...

Fastest
dilithium2_aes dilithium2_aes dilithium2_aes kyber1024 2115.05

dilithium2_aes dilithium2_aes dilithium2_aes lightsaber 2141.47

dilithium2_aes dilithium2_aes dilithium2_aes kyber512 2201.1

Table 3.15: The three slowest, the three median, and the three fastest measured hand-
shakes. Columns 1-4 depict the chosen signature and key-exchange algo-
rithms and Column 5 depicts the measured handshake speed.

Development of Software Libraries
Mixed PQ-PKI 45

Root CA Sub CA EE KEX Handshakes / s

Slowest
rainbowIIIclassic rainbowIIIclassic spx256srobust frodo640aes 0.22

dilithium5_aes dilithium5_aes spx128ssimple ntrulpr1277 1.68

rainbowVclassic rainbowVclassic rainbowVclassic sikep751 3.9
...

Median
spx256srobust spx256srobust dilithium2_aes sikep434 26.55

spx256frobust spx256frobust spx256frobust ntru_hrss701 26.6

spx128fsimple spx128fsimple falcon1024 sikep434 26.65
...

Fastest
falcon512 falcon512 dilithium2_aes ntru_hps2048509 1462.16

falcon512 falcon512 dilithium2_aes hqc128 1488.0

falcon512 falcon512 dilithium2_aes lightsaber 1537.84

Table 3.16: The three slowest, the three median, and the three fastest measured hand-
shakes when measuring with trickle enabled (limited to 256 kB/s). Columns
1-4 depict the chosen signature and key-exchange algorithms and Column
5 depicts the measured handshake speed.

Fastest Handshake in the Unlimited Variant The fastest measurement for the unlim-
ited variant is the combination of dilithium2_aes for all three certificates, and kyber512
as key exchange algorithm and 2201.1 handshakes per second are measured. When
enabling trickle, this combination achieves only the 65th fastest measured speed with
575.81 handshakes per second which is around 3 times slower than the fastest combi-
nation with trickle enabled. The handshake size of the dilithium2_aes and kyber512
combination is 12,661B and ranks at the 143th position.

Fastest Handshake with Trickle Enabled The fastest measurement for the trickle-
enabled variant is the combination of falcon512 for the root and sub CA certificates,
dilithium2_aes for the EE certificate, and lightsaber as key exchange algorithm and
1537.84 handshakes per second are measured. In the unlimited variant, this combination
achieves the 21th rank with 1888.73 handshakes per second The handshake size of the
combination is 8532B and ranks at the 34th position.

Smallest Handshake Size The smallest handshake is the combination of falcon512 and
sidhp434 with a total handshake size of only 5596B. Since the sidhp434 computations
are slow, the combination only ranks at position 1083 with 79.53 handshakes per second
in the unlimited variant. With trickle enabled, it ranks at position 813 with 78.88

handshakes per second. It can be seen that the network speed does not make much of
a difference in this case and the computation time dominates the handshake speed.

Falcon andDilithium In [SKD20] it is shown that a combination of falcon and dilithium
performs better than any of the schemes used alone. That is, combining falcon for root

46 Development of Software Libraries
D3.1 – Design and Implementation in Software

and intermediate CAs with dilithium for end-entity certificates, the measured TLS hand-
shake speeds are faster than when the complete chain uses falcon or dilithium. In our
experiments, we see the same effect with the trickle-enabled variant. That is, combining
falcon with dilithium in the certificate chain yields faster handshakes than utilizing only
one of the algorithms. It is interesting to see that while falcon512 and dilithium2_aes
are the fastest combination in the trickle-enabled variant, dilithium2_aes-only is the
fastest combination in the unlimited variant. The tradeoff between computational
speed and key/signature sizes seems to shift towards dilithium2_aes for faster networks.

Development of Software Libraries
Mixed PQ-PKI 47

4 D3.2 Hardening Measures

This chapter describes the hardening measures of our software implementations of
WP3 work package. Section 4.1 gives an overview of current attacks on physical
implementations. Lastly, in Section 4.2 we discuss the design and implementation of
counter-measures in the software libraries developed in this work package. Several
countermeasures, especially to defend against timing-attacks have also been described
in Section 3.

4.1 Overview of Physical Attacks

The primary aspect regarding the security of cryptographic systems is their mathematical
security. A mathematical model, however, does not encompass physical properties of
a cryptographic implementation. In the real world, there are side-channels that are
introduced due to the physical nature of concrete implementations. A side-channel is a
physical information channel over which implementation-specific characteristics leak.
That is, side-channels are observable physical side-effects that are caused by operations
of implementations.

Such side-channels are for example timings, power consumption, electromagnetic
fields, and other physical properties that can be observed and that are influenced by
an implementation. The information leaks on side-channels can lead to side-channel
attacks, which in turn may compromise the security of a cryptosystem. Physical side-
channel security usually lies outside the consideration of mathematical security of
cryptosystems, but can be prohibited with carefully implemented countermeasures.
Countermeasures typically remove or reduce the correlation of secret values to data
that is leaked through a side-channel.

Physical attacks can be broadly categorized by active and passive attacks. While
passive attacks are performed by only monitoring side-channels, active attacks also
include the physical manipulation of a device in order to trigger different behavior in
the program execution. Many side-channels are only exploitable from a near physical
distance. Timing attacks can, however, also be applied remotely.

In the following, some physical attacks and respective countermeasures are treated
in more detail.

4.1.1 Timing Attacks

Timing side-channel attacks have first been described in 1996 by Kocher for RSA,
DH, and DSS [Koc96]. It was shown that for RSA and Diffie-Hellman modular expo-
nentiations using the private key leak secret key bits through a timing side-channel.
That is, the execution length of the operation depends on bits of the private key, thus

Development of Software Libraries
D3.2 Hardening Measures 49

revealing a correlation to these bits. The attack can be carried out as a passive attacker
(known-ciphertext) or as an active attacker (chosen-ciphertext). When enough data is
collected, the private key bits can be derived from the correlation with the respectively
measured timings.

In 2003 it was demonstrated by Boneh and Brumley that such attacks can be carried
out from a remote attacker [BB03]. In one of the considered scenarios, the attacker
resides in the same local area network as the victim. The victim in this case is an
OpenSSL server whose private key was successfully extracted by the attacker. The
attack utilizes timing leakages that depend on the private key in the former OpenSSL
implementation.

Thus, it has become apparent that cryptographic implementations must include
countermeasures to timing attacks, since they can be executed passively and even
remotely. The two main methods to protect against timing attacks are masking and
constant-time code.

Masking is a technique where secret values that may leak timing information are
transformed before using them. That is, the algebraic value is randomly transformed in
such a way that it can be undone after the computation is done. The attacker can then
only correlate the leaked timings with the masked values, not revealing a correlation to
the actual secret value. Masking can only be applied when the mathematical structure
allows for it.

Constant-time code ensures that no timing leakages exist that reveal any secret data.
In other words, the execution time does not depend on secret data. There may be
variances in the execution time of the implementation but only if they depend on
publicly known or non-sensitive data.

4.1.2 Simple Power Analysis (SPA) and Differential Power Analysis (DPA)

Kocher also first described simple power analysis (SPA) attacks and differential power
analysis (DPA) attacks [KJJ99].

In general, power analysis attacks analyze power traces of a device. Such a trace
is obtained by measuring the electrical current while a cryptographic operation is
executed. Different instructions exhibit different power consumption patterns, thus
correlate to instructions that are executed.

SPA typically directly interprets a trace. It can also be applied to the mean of
multiple traces of the same operation with the same input data to reduce noise. As an
example, conditional branches can be recognized in a trace, which may reveal secret
key bits if the branching depends on the secret key. A concrete example for this are
naively implemented square-and-multiply modular exponentiation methods. Squaring
or multiplying can usually be distinguished in power traces and the execution pattern
depends on single bits of the (secret) exponent and thus immediately reveals those bits.

Differential power analysis makes use of multiple traces of operations that may
use differing input data. While the traces might contain too much noise to apply
SPA, DPA applies statistical models to find the relation between power consumption
and secret data. In comparison to SPA, DPA relies less on existing knowledge of the
implementation.

50 Development of Software Libraries
D3.2 Hardening Measures

We note that SPA and DPA can also be used to aid brute-force attacks. As an example,
the knowledge of the Hamming weight of a secret key, or even of each of its single
bytes, reduces the search space.

4.1.3 Fault Attacks

Fault attacks are active attacks that aim at disturbing instructions during the computa-
tion of cryptographic operations through one or more faults. Such an attack was fist
proposed in the cryptographic context by Boneh, DeMillo, and Lipton in 1997 [BDL97].

Techniques used for inducing faults are, for instance, clock glitching, power glitching,
or the physical manipulation of memory locations. With a carefully chosen point for
inducing faults, the attacker may observe secret-dependent behavior in the following
execution of the algorithm. For example, some cryptosystems use secret-dependent
dummy operations in order to achieve constant-time behavior that thwarts timing
attacks; Faulting such an operation still yields the correct output, while faulting a
necessary operation results in a faulty output. Observing this output, e.g. via observing
whether a key agreement succeeds, can therefore leak information on secret key bits.

Fault attacks can be divided into two categories: first-order fault attacks induce a
single fault during a cryptographic computation, while higher order fault attacks allow
multiple faults per run. Work on fault attacks usually sets up a detailed attacker model
that is necessary for executing the respective attacks in practice.

A simple, but effective countermeasure against first-order fault attacks is given by
redundant computations, such that the correctness of the execution can be verified.
Furthermore, protected implementations refrain from using dummy operations. Instead,
to protect against fault attacks, implementations should use outputs of all instructions
at a later point in the computation, such that faulting any instruction leads to an invalid
output. Similarly, memory access patterns should be designed in a way that does not
keep any values in memory without further being used. Thus, this can prevent memory
faults that try to detect whether variables are reused in later computations.

4.2 Implemented Counter-Measures

This section outlines implemented side-channel-attack counter-measures. In Section
4.2.1 we present the design and constant-time implementation of Classic McEliece.
Section 4.2.2 shows the software implementation of XMSS on a Hardware Security
Module, which effectively secures the private keys.

4.2.1 Classic McEliece Streaming in Constant-Time

The newly developed streaming approach for Classic McEliece that has been described
in Section 3.3.1 is hardened against timing attacks. The code has been written to be
executed in constant time to avoid timing issues. It therefore retains the constant-time
security property from the original code. Since the code utilizes an LU decomposition,
special care has been taken to implement the permutation in constant time. Branches
are realized by masking the operations with all-zero or all-one masks, resulting in more

Development of Software Libraries
Implemented Counter-Measures 51

(needless) computations but ensures taking the same execution path across different
inputs.

4.2.2 XMSS Implementation on a Hardware Security Module

To mitigate attacks on the implementation, an XMSS implementation has been de-
veloped for a hardware security module (HSM). While many counter-measures or
mitigations can be implemented in software, a tamper-resistant HSM can protect the
software from many physical attacks.

Utimaco, a company located in Aachen (Germany), produces configurable HSMs
and is an associated partner in the QuantumRISC project. It is possible to develop
custom firmware modules that can then be loaded into the HSM. This makes it possible
to extend the capabilities of the HSM, as in this case by providing a custom firmware
module that implements the XMSS signature scheme. For writing such a module,
Utimaco offers the CryptoServer SDK1.

An XMSS implementation has been developed for the Utimaco SecurityServer Se
Gen2 Se122 using the CryptoServer SDK. The implementation is based on the XMSS
reference code which is available on Github3. Adjustments to the implementation were
made to port the reference code implementation to the HSM.

In our implementation the keys are stored securely in the HSM and the public key
digest serves as an index to access the keys. We provide management API functions to
list, generate, delete, and view additional information about the keys. The additional
information that can be obtained, contains, among other things, the number of signa-
tures that can still be generated with the key. As XMSS is a stateful signature scheme
with a maximum number of signatures, this is an important information.

Since for many applications, detached signatures are needed (e.g. for signing X.509
certificates), the API provides these instead of the ”‘signed-message-API”’ that the
reference code offers.

In the following, the performance of the XMSS operations on the HSM is illustrated.
As expected, the key generation takes a long time for the parameter sets with a large
tree depth. The parameter sets with tree depths greater than 16 are excluded and have
not been evaluated. When a large number of signatures from a single key is needed,
it can be worthwhile to consider the multi-tree variant of XMSS. In this variant the
signature size can be increased in favor of more signatures, while keeping the key
generation time low.

1https://hsm.utimaco.com/products-hardware-security-modules/
software-development-kit-sdk/cryptoserver-sdk/

2The datasheet can be obtained at https://hsm.utimaco.com/
products-hardware-security-modules/general-purpose-hsm/
securityserver-se-gen2/

3https://github.com/XMSS/xmss-reference

52 Development of Software Libraries
D3.2 Hardening Measures

https://hsm.utimaco.com/products-hardware-security-modules/software-development-kit-sdk/cryptoserver-sdk/
https://hsm.utimaco.com/products-hardware-security-modules/software-development-kit-sdk/cryptoserver-sdk/
https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-se-gen2/
https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-se-gen2/
https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-se-gen2/
https://github.com/XMSS/xmss-reference

Parameter Set KeyGen Sign Signatures Verify
Hash Function n Tree Height in s in s Operations/s in s

SHA2-256 256 10 9.19 0.0373 26.83 0.0068
SHA2-512 512 10 47.68 0.1748 5.72 0.0250

SHAKE-128 256 10 22.21 0.0823 12.14 0.0131
SHAKE-256 512 10 80.52 0.2899 3.45 0.0444

SHA2-256 256 16 588.27 0.0385 25.95 0.0066

SHA2-512 512 16 3049.81 0.1787 5.60 0.0256

SHAKE-128 256 16 1419.50 0.0919 10.88 0.0123

SHAKE-256 512 16 5099.83 0.2956 3.38 0.0425

Table 4.1: Performance of the XMSS Module on the Utimaco HSM

10 100 1,000 10,000

10

16

Seconds [A] (logarithmic)

XM
SS

Tr
ee

D
ep

th

XMSS Key Generation Time

SHA256
SHA512

SHAKE128
SHAKE256

Figure 4.1: XMSS Key Generation Timings on the Utimaco HSM

Development of Software Libraries
Implemented Counter-Measures 53

4.2.3 Timing Attack and Countermeasure on the Rejection Sampling of HQC
and BIKE

Although round 3 candidates of the NIST PQC competition have already been inten-
sively vetted with regard to side-channel attacks, one important attack vector has
hitherto been missed: PQ schemes often rely on rejection sampling techniques to obtain
pseudorandomness from a specific distribution. In [Guo+22], we reveal that rejection
sampling routines that are seeded with secret-dependent information and leak timing
information result in practical key recovery attacks in the code-based key encapsulation
mechanisms HQC and BIKE.

Both HQC and BIKE have been selected as alternate candidates in the third round
and continued in the fourth round of the NIST competition, which puts them on track
for getting standardized separately to the finalists. They have already been specifically
hardened with constant-time decoders to avoid side-channel attacks. However, in our
work, we show novel timing vulnerabilities in both schemes: (1) Our secret key recovery
attack on HQC requires only approx. 866,000 idealized decapsulation timing oracle
queries in the 128-bit security setting. It is structurally different from previously identi-
fied attacks on the scheme: Previously, exploitable side-channel leakages have been
identified in the BCH decoder of a previously submitted HQC version, in the ciphertext
check as well as in the pseudorandom function of the Fujisaki-Okamoto transformation.
In contrast, our attack uses the fact that the rejection sampling routine invoked during
the deterministic re-encryption of the decapsulation leaks secret-dependent timing
information, which can be efficiently exploited to recover the secret key when HQC
is instantiated with the (now constant-time) BCH decoder, as well as with the RMRS
decoder of the current submission. (2) From the timing information of the constant
weight word sampler in the BIKE decapsulation, we demonstrate how to distinguish
whether the decoding step is successful or not, and how this distinguisher is then
used in the framework of the GJS attack to derive the distance spectrum of the secret
key, using 5.8 × 107 idealized timing oracle queries. We further discusses possible
countermeasures and their limits. Finally, Nicolas Sendrier proposes a more efficient
countermeasure to our attack in [Sen21] which is now integrated in the BIKE and HQC
reference implementations.

54 Development of Software Libraries
D3.2 Hardening Measures

Bibliography

[Alk+20] Erdem Alkim et al. “ISA Extensions for Finite Field Arithmetic”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020.3
(2020). https://tches.iacr.org/index.php/TCHES/article
/view/8589, pp. 219–242. issn: 2569-2925. doi: 10.13154/tches.
v2020.i3.219-242.

[Ara+17] Nicolas Aragon et al. BIKE – Bit Flipping Key Encapsulation. https://
bikesuite.org/. 2017.

[BB03] David Brumley and Dan Boneh. “Remote Timing Attacks Are Practical”.
In: USENIX Security 2003: 12th USENIX Security Symposium. USENIX
Association, Aug. 2003.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract)”. In:
Advances in Cryptology – EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233.
Lecture Notes in Computer Science. Springer, Heidelberg, May 1997,
pp. 37–51. doi: 10.1007/3-540-69053-0_4.

[Beu22] Ward Beullens. Breaking Rainbow Takes a Weekend on a Laptop. Cryptology
ePrint Archive, Report 2022/214. https://eprint.iacr.org/
2022/214. 2022.

[BGJ22a] Alison Becker, Rebecca Guthrie, and Michael J. Jenkins. Non-Composite Hy-
brid Authentication in PKIX and Applications to Internet Protocols. Internet-
Draft draft-becker-guthrie-noncomposite-hybrid-auth-00. Work in Progress.
Internet Engineering Task Force, Mar. 2022. 10 pp. url: https://
datatracker.ietf.org/doc/draft-becker-guthrie-nonco
mposite-hybrid-auth/00/.

[BGJ22b] Alison Becker, Rebecca Guthrie, and Michael J. Jenkins. Related Certificates
for Use in Multiple Authentications within a Protocol. Internet-Draft draft-
becker-guthrie-cert-binding-for-multi-auth-01. Work in Progress. Internet
Engineering Task Force, June 2022. 11 pp. url: https://datatrac
ker.ietf.org/doc/draft-becker-guthrie-cert-binding-
for-multi-auth/01/.

[CC21a] Matt Campagna and Eric Crockett. Hybrid Post-Quantum Key Encapsula-
tion Methods (PQ KEM) for Transport Layer Security 1.2 (TLS). Internet-
Draft draft-campagna-tls-bike-sike-hybrid-07. Work in Progress. Internet
Engineering Task Force, Sept. 2021. 17 pp. url: https://datatr
acker.ietf.org/doc/draft-campagna-tls-bike-sike-
hybrid/07/.

Development of Software Libraries
Bibliography 55

https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://doi.org/10.13154/tches.v2020.i3.219-242
https://doi.org/10.13154/tches.v2020.i3.219-242
https://bikesuite.org/
https://bikesuite.org/
https://doi.org/10.1007/3-540-69053-0_4
https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/214
https://datatracker.ietf.org/doc/draft-becker-guthrie-noncomposite-hybrid-auth/00/
https://datatracker.ietf.org/doc/draft-becker-guthrie-noncomposite-hybrid-auth/00/
https://datatracker.ietf.org/doc/draft-becker-guthrie-noncomposite-hybrid-auth/00/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/01/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/01/
https://datatracker.ietf.org/doc/draft-becker-guthrie-cert-binding-for-multi-auth/01/
https://datatracker.ietf.org/doc/draft-campagna-tls-bike-sike-hybrid/07/
https://datatracker.ietf.org/doc/draft-campagna-tls-bike-sike-hybrid/07/
https://datatracker.ietf.org/doc/draft-campagna-tls-bike-sike-hybrid/07/

[CC21b] Ming-Shing Chen and Tung Chou. “Classic McEliece on the ARM Cortex-
M4”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021.3 (2021), pp. 125–148. doi: 10.46586/tches.v2021.
i3.125-148. url: https://tches.iacr.org/index.php/
TCHES/article/view/8970.

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. “Optimizing BIKE
for the Intel Haswell and ARM Cortex-M4”. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021.3 (2021), pp. 97–
124. doi: 10.46586/tches.v2021.i3.97-124. url: https:
//tches.iacr.org/index.php/TCHES/article/view/8969.

[Cel+22] Sofia Celi et al. KEM-based Authentication for TLS 1.3. Internet-Draft draft-
celi-wiggers-tls-authkem-01. Work in Progress. Internet Engineering Task
Force, Mar. 2022. 25 pp. url: https://datatracker.ietf.org/
doc/draft-celi-wiggers-tls-authkem/01/.

[Che+22] Ming-Shing Chen et al. “Carry-Less to BIKE Faster”. In: Applied Cryptog-
raphy and Network Security - 20th International Conference, ACNS 2022,
Rome, Italy, June 20-23, 2022, Proceedings. Ed. by Giuseppe Ateniese and
Daniele Venturi. Vol. 13269. Lecture Notes in Computer Science. Springer,
2022, pp. 833–852. doi: 10.1007/978-3-031-09234-3_41. url:
https://doi.org/10.1007/978-3-031-09234-3_41.

[CPS19a] Eric Crockett, Christian Paquin, and Douglas Stebila. Prototyping post-
quantum and hybrid key exchange and authentication in TLS and SSH.
Cryptology ePrint Archive, Paper 2019/858. https://eprint.iacr.
org/2019/858. 2019. url: https://eprint.iacr.org/2019/
858.

[CPS19b] Eric Crockett, Christian Paquin, and Douglas Stebila. Prototyping post-
quantum and hybrid key exchange and authentication in TLS and SSH.
Cryptology ePrint Archive, Report 2019/858. https://eprint.iacr.
org/2019/858. 2019.

[Das+20] Bhargav Das et al. “PQFabric: A Permissioned Blockchain Secure from
Both Classical and Quantum Attacks”. In: CoRR abs/2010.06571 (2020).
arXiv: 2010.06571. url: https://arxiv.org/abs/2010.06571.

[Gon+21] Ruben Gonzalez et al. “Verifying Post-Quantum Signatures in 8 kB of
RAM”. In: Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Springer,
Heidelberg, 2021, pp. 215–233. doi: 10.1007/978-3-030-81293-
5_12.

[Guo+22] Qian Guo et al. “Don’t Reject This: Key-Recovery Timing Attacks Due to
Rejection-Sampling in HQC and BIKE”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. Vol. 2022. 3. 2022, pp. 223–263. doi: 10.46586/tches.
v2022.i3.223-263. url: https://doi.org/10.46586/tches.
v2022.i3.223-263.

56 Development of Software Libraries
Bibliography

https://doi.org/10.46586/tches.v2021.i3.125-148
https://doi.org/10.46586/tches.v2021.i3.125-148
https://tches.iacr.org/index.php/TCHES/article/view/8970
https://tches.iacr.org/index.php/TCHES/article/view/8970
https://doi.org/10.46586/tches.v2021.i3.97-124
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/01/
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/01/
https://doi.org/10.1007/978-3-031-09234-3_41
https://doi.org/10.1007/978-3-031-09234-3_41
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://arxiv.org/abs/2010.06571
https://arxiv.org/abs/2010.06571
https://doi.org/10.1007/978-3-030-81293-5_12
https://doi.org/10.1007/978-3-030-81293-5_12
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Anal-
ysis”. In: Advances in Cryptology – CRYPTO’99. Ed. by Michael J. Wiener.
Vol. 1666. Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
1999, pp. 388–397. doi: 10.1007/3-540-48405-1_25.

[KK18] Franziskus Kiefer and Kris Kwiatkowski. Hybrid ECDHE-SIDH Key Exchange
for TLS. Internet-Draft draft-kiefer-tls-ecdhe-sidh-00. Work in Progress.
Internet Engineering Task Force, Nov. 2018. 13 pp. url: https://datat
racker.ietf.org/doc/draft-kiefer-tls-ecdhe-sidh/00/.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology – CRYPTO’96. Ed.
by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1996, pp. 104–113. doi: 10.1007/3-540-68697-
5_9.

[Mas+22] Jake Massimo et al. Algorithms and Identifiers for Post-Quantum Algo-
rithms. Internet-Draft draft-massimo-lamps-pq-sig-certificates-00. Work in
Progress. Internet Engineering Task Force, July 2022. 12 pp. url: https:
//datatracker.ietf.org/doc/draft-massimo-lamps-pq-
sig-certificates/00/.

[MM22] Marcel Müller and Michael Meyer. “QuantumRISC WP2 Report: Analysis
and Optimization of PQC schemes”. 2022. url: https://quantumri
sc.org/results/quantumrisc-wp2-report.pdf.

[Noa+20] David Noack et al. QuantumRISC WP1 Report: Use Cases and Requirements.
2020. url: https://quantumrisc.org/results/quantumrisc-
wp1-report.pdf.

[NRW21] Ruben Niederhagen, Johannes Roth, and Julian Wälde. Streaming SPHINCS+
for Embedded Devices using the Example of TPMs. Cryptology ePrint Archive,
Report 2021/1072. https://ia.cr/2021/1072. 2021.

[OG22] Mike Ounsworth and John Gray. Composite KEM For Use In Internet PKI.
Internet-Draft draft-ounsworth-pq-composite-kem-00. Work in Progress.
Internet Engineering Task Force, July 2022. 24 pp. url: https://da
tatracker.ietf.org/doc/draft-ounsworth-pq-composite-
kem/00/.

[OGM22] Mike Ounsworth, John Gray, and Serge Mister. Composite Encryption
For Use In Internet PKI. Internet-Draft draft-ounsworth-pq-composite-
encryption-01. Work in Progress. Internet Engineering Task Force, Feb.
2022. 22 pp. url: https://datatracker.ietf.org/doc/draft-
ounsworth-pq-composite-encryption/01/.

[OMG22] Mike Ounsworth, Serge Mister, and John Gray. Explicit Pairwise Composite
Keys For Use In Internet PKI. Internet-Draft draft-ounsworth-pq-explicit-
composite-keys-01. Work in Progress. Internet Engineering Task Force, Feb.
2022. 15 pp. url: https://datatracker.ietf.org/doc/draft-
ounsworth-pq-explicit-composite-keys/01/.

Development of Software Libraries
Bibliography 57

https://doi.org/10.1007/3-540-48405-1_25
https://datatracker.ietf.org/doc/draft-kiefer-tls-ecdhe-sidh/00/
https://datatracker.ietf.org/doc/draft-kiefer-tls-ecdhe-sidh/00/
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://datatracker.ietf.org/doc/draft-massimo-lamps-pq-sig-certificates/00/
https://datatracker.ietf.org/doc/draft-massimo-lamps-pq-sig-certificates/00/
https://datatracker.ietf.org/doc/draft-massimo-lamps-pq-sig-certificates/00/
https://quantumrisc.org/results/quantumrisc-wp2-report.pdf
https://quantumrisc.org/results/quantumrisc-wp2-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://ia.cr/2021/1072
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-kem/00/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-kem/00/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-kem/00/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-encryption/01/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-encryption/01/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-explicit-composite-keys/01/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-explicit-composite-keys/01/

[OP22] Mike Ounsworth and Massimiliano Pala. Composite Signatures For Use In
Internet PKI. Internet-Draft draft-ounsworth-pq-composite-sigs-07. Work
in Progress. Internet Engineering Task Force, June 2022. 23 pp. url:
https://datatracker.ietf.org/doc/draft-ounsworth-pq-
composite-sigs/07/.

[OPK22] Mike Ounsworth, Massimiliano Pala, and Jan Klaußner. Composite Public
and Private Keys For Use In Internet PKI. Internet-Draft draft-ounsworth-
pq-composite-keys-02. Work in Progress. Internet Engineering Task Force,
June 2022. 30 pp. url: https://datatracker.ietf.org/doc/
draft-ounsworth-pq-composite-keys/02/.

[Qrw] “QuantumRISC WP4 Report”. 2022. url: https://quantumrisc.
org/results/quantumrisc-wp4-report.pdf.

[RKK21] Johannes Roth, Evangelos Karatsiolis, and Juliane Krämer. Classic McEliece
Implementation with Low Memory Footprint. Cryptology ePrint Archive,
Report 2021/138. https://ia.cr/2021/138. 2021.

[Sen21] Nicolas Sendrier. Secure Sampling of Constant-Weight Words – Application
to BIKE. Cryptology ePrint Archive, Report 2021/1631, 20211217:142141
(posted 1639750901 17-Dec-2021 14:21:41 UTC). https://eprint.
iacr.org/2021/1631/20211217:142141. 2021.

[SFG22] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange in
TLS 1.3. Internet-Draft draft-ietf-tls-hybrid-design-04. Work in Progress.
Internet Engineering Task Force, Jan. 2022. 20 pp. url: https://da
tatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
04/.

[SKD20] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. Post-
Quantum Authentication in TLS 1.3: A Performance Study. Cryptology
ePrint Archive, Report 2020/071. https://eprint.iacr.org/
2020/071. 2020.

[SS17] John M. Schanck and Douglas Stebila. A Transport Layer Security (TLS)
Extension For Establishing An Additional Shared Secret. Internet-Draft draft-
schanck-tls-additional-keyshare-00. Work in Progress. Internet Engineer-
ing Task Force, Apr. 2017. 10 pp. url: https://datatracker.ietf.
org/doc/draft-schanck-tls-additional-keyshare/00/.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-quantum TLS
without handshake signatures”. In: Proc. 27th ACM Conference on Com-
puter and Communications Security (CCS) 2020. ACM, 2020. doi: 10.
1145/3372297.3423350.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-
quantum KEMTLS with pre-distributed public keys. Cryptology ePrint
Archive, Paper 2021/779. https://eprint.iacr.org/2021/779.
2021. url: https://eprint.iacr.org/2021/779.

58 Development of Software Libraries
Bibliography

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/07/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/07/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-keys/02/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-keys/02/
https://quantumrisc.org/results/quantumrisc-wp4-report.pdf
https://quantumrisc.org/results/quantumrisc-wp4-report.pdf
https://ia.cr/2021/138
https://eprint.iacr.org/2021/1631/20211217:142141
https://eprint.iacr.org/2021/1631/20211217:142141
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/04/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/04/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/04/
https://eprint.iacr.org/2020/071
https://eprint.iacr.org/2020/071
https://datatracker.ietf.org/doc/draft-schanck-tls-additional-keyshare/00/
https://datatracker.ietf.org/doc/draft-schanck-tls-additional-keyshare/00/
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2021/779
https://eprint.iacr.org/2021/779

[ST20] National Institute of Standards and Technology. Recommendation for State-
ful Hash-Based Signature Schemes. Tech. rep. NIST Special Publication
800-208. Washington, D.C.: U.S. Department of Commerce, 2020. doi:
10.6028/NIST.SP.800-208.

[Ste+] Douglas Stebila et al. Open Quantum Safe Project. url: https://open
quantumsafe.org.

[Tur+22] Sean Turner et al. Algorithm Identifiers for NIST’s PQC Algorithms for
Use in the Internet X.509 Public Key Infrastructure. Internet-Draft draft-
turner-lamps-nist-pqc-kem-certificates-01. Work in Progress. Internet En-
gineering Task Force, Mar. 2022. 8 pp. url: https://datatrack
er.ietf.org/doc/draft-turner-lamps-nist-pqc-kem-
certificates/01/.

[Vre+22] Christine van Vredendaal et al. Quantum Safe Cryptography Key Informa-
tion. Internet-Draft draft-uni-qsckeys-01. Work in Progress. Internet En-
gineering Task Force, May 2022. 41 pp. url: https://datatracker.
ietf.org/doc/draft-uni-qsckeys/01/.

[Why+17] William Whyte et al. Quantum-Safe Hybrid (QSH) Key Exchange for Trans-
port Layer Security (TLS) version 1.3. Internet-Draft draft-whyte-qsh-tls13-
06. Work in Progress. Internet Engineering Task Force, Oct. 2017. 19 pp.
url: https://datatracker.ietf.org/doc/draft-whyte-
qsh-tls13/06/.

Development of Software Libraries
Bibliography 59

https://doi.org/10.6028/NIST.SP.800-208
https://openquantumsafe.org
https://openquantumsafe.org
https://datatracker.ietf.org/doc/draft-turner-lamps-nist-pqc-kem-certificates/01/
https://datatracker.ietf.org/doc/draft-turner-lamps-nist-pqc-kem-certificates/01/
https://datatracker.ietf.org/doc/draft-turner-lamps-nist-pqc-kem-certificates/01/
https://datatracker.ietf.org/doc/draft-uni-qsckeys/01/
https://datatracker.ietf.org/doc/draft-uni-qsckeys/01/
https://datatracker.ietf.org/doc/draft-whyte-qsh-tls13/06/
https://datatracker.ietf.org/doc/draft-whyte-qsh-tls13/06/

	Executive Summary
	Introduction
	D3.1 – Design and Implementation in Software
	PQC Libraries: Existing and related
	Proposed PQC API
	Software Implementation and Optimization of PQC Algorithms
	Mitigation of Memory Requirements with a Streaming Approach
	Carry-Less to BIKE faster
	Optimizing Kyber and NewHope Ciphers on RISC-V
	Finite Field Arithmetic in Kyber and NewHope
	Number Theoretic Transform

	Design and Implementation of PQC-Based Protocols
	X.509 Certificates
	TLS 1.3
	Existing PQC Protocol Approaches and Implementations
	Challenges regarding the Integration of PQC in TLS and X.509
	Classic McEliece Streaming in TLS 1.2
	SPHINCS+ and Streaming TPM 2.0
	Stateful Hash-Based Signature Schemes

	Mixed PQ-PKI
	Considerations for Mixed Post-Quantum X.509 Certificate Chains
	Mixing PQC Algorithms in TLS

	D3.2 Hardening Measures
	Overview of Physical Attacks
	Timing Attacks
	Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
	Fault Attacks

	Implemented Counter-Measures
	Classic McEliece Streaming in Constant-Time
	XMSS Implementation on a Hardware Security Module
	Timing Attack and Countermeasure on the Rejection Sampling of HQC and BIKE

	Bibliography

