
Work Package 6, Deliverables 6.1 and 6.2
Evaluation, integration and demonstration
of use cases

Version 1.0
Project Coordination Fraunhofer Institute for Secure Information Technology
Date of preparation December 4, 2023

Authors

• Continental AG:

• Maurice Heymann

• Burak Selcuk

• Elektrobit Automotive GmbH:

• Florian Grießer

• Anahita Hamidi

• Hannes Hennig

• Lars Müller

• MTG AG:

• Evangelos Karatsiolis

Projektkoordination
Norman Lahr
Fraunhofer Institute for Secure Information Technology
Advanced Cryptographic Engineering
Rheinstr. 75
D-64295 Darmstadt
Deutschland

Telefon +49 6151 869100
Fax +49 6151 869224
Mail norman.lahr@sit.fraunhofer.de

mailto:norman.lahr@sit.fraunhofer.de

Contents

1. Executive Summary 5

2. Terminology 6

3. Introduction 7
3.1. Document structure . 7
3.2. Selection of use cases . 7
3.3. Selection of PQC Algorithm . 10

3.3.1. CRYSTALS-Dilithium - Signature Scheme 10
3.3.2. CRYSTALS-Kyber - Key encapsulation mechanism (KEM) 13

3.4. Hardware selection . 17
3.4.1. Infineon Tricore TC38xQP . 17

4. AUTOSAR 19
4.1. Architecture . 19
4.2. Crypto Stack . 20

4.2.1. Crypto Service Manager . 21
4.2.2. Crypto Interface . 21
4.2.3. Crypto Driver . 22
4.2.4. Cryptographic primitive . 22

4.3. Communication Stack . 24

5. D6.1 - Demonstrator description 26
5.1. Goals . 26
5.2. Architecture . 26
5.3. AURIX TC38xQP Demonstrator . 27
5.4. Demonstrator Sequence . 28
5.5. Server / Backend . 29

5.5.1. Communication protocol . 29
5.6. Frontend . 32

5.6.1. User Interface and Visualization 32
5.6.2. Communication with Server . 32

5.7. Target - Tricore TC38xQP . 34
5.7.1. Implementation of traditional cryptographic primitives 34
5.7.2. Implementation of PQC primitives 37

6. D6.2 - Evaluation of implemented schemes 44
6.1. TriCore Performance Measurements 44

6.1.1. Use case: Secure Software Download and Secure Access Control 45

Evaluation, integration and demonstration of use cases
Contents 3

6.1.2. Use case: Secure Session Establishment 45
6.1.3. Further aspects . 46

A. Performance Measurements 48

Bibliography 49

Evaluation, integration and demonstration of use cases
Contents 4

1. Executive Summary

The QuantumRISC project is funded by the German Federal Ministry of Education and
Research (BMBF). Goal of the project is in short to “bring Post-Quantum Computing
(PQC) from theory into pratice”. The project is divided into the following six work
packages (WP) to analyse and improve schemes, and to identify and develop software,
hardware acceleration, and feasible strategies for the use of post-quantum cryptographic
applications on embedded devices:

• WP 1: Use Cases and Requirements

• WP 2: Analysis and Optimization of PQC Schemes

• WP 3: Development of Software Libraries

• WP 4: Development of Hardware Accelerators

• WP 5: Software-Hardware Co-Design

• WP 6: Demonstrator of Use Cases

This report focuses on WP 6 describing the implementation of use cases in automotive
embedded controllers and the demonstrator architecture itself. The actual implemen-
tation was performed in the AUTOSAR classic environment, which is the de-facto
standard for automotive embedded devices.

Evaluation, integration and demonstration of use cases
Executive Summary 5

2. Terminology

This section provides an overview of abbreviations and terms used in this document.

Abbreviation Name Explanation
AUTOSAR AUTomotive

Open System
ARchitecture

De-facto standard for automotive basic software.

CAN Controller Area
Network

Automotive serial bus standard.

CDO Crypto Driver
Object

The AUTOSAR Crypto Drivers allow defining
of different Crypto Driver Objects (i.e. AES
accelerator, SW component, etc), which shall be
used for concurrent requests in different buffers
[9].

CryIf Crypto Interface AUTOSAR module CryIf interfaces the
underlaying Crypto modules.

Crypto Crypto MCAL
Module

AUTOSAR module Crypto implements
cryptographic routines in software or hardware.

Csm Crypto Service
Manager

AUTOSAR module Csm manages the access to
the underlaying CryIf and Crypto modules.

ECU Electronic Control
Unit

Computing unit which handles specific systems,
like engine control, brake control, in a vehicle.

FlexRay FlexRay Automotive serial bus system.
KEM Key Encapsulation

Mechanism
Cryptographic primitive that allows to securely
transmit a key.

LIN Local Interconnect
Network

Automotive serial bus system.

MCAL Microcontroller
Abstraction Layer

AUTOSAR layer classifying hardware devices
drivers.

OSEK Offene Systeme
und deren
Schnittstellen für
die Elektronik in
Kraftfahrzeugen

Standard for automotive operating system,
communications stack, and network
management protocol (engl. “Open Systems
and their Interfaces for the Electronics in Motor
Vehicles”).

Table 2.1.: Overview of the terminology used in this report.

Evaluation, integration and demonstration of use cases
Terminology 6

3. Introduction

3.1. Document structure

This report documents the results of work package 6 (WP 6) of the QuantumRISC
project. The WP 6 demonstrates use cases identified and specified by the previous work
packages. The selection of the demonstrated use cases is described in Section 3.2 and
the embedded platforms used for demonstration are discussed in Section 3.4.

The WP6 consists of two deliverables:

• D 6.1 - Documentation of use cases and demonstrator

• D 6.2 - Documentation of the algorithm evaluation

The deliverable D 6.1 in Chapter 5 describes the implementation of use cases and
their demonstration, while target specific implementation details are given. Chapter 6
discusses and evaluates the performance of the used algorithms, whereas the feasibility
of the usage in the embedded automotive environment is considered.

3.2. Selection of use cases

This chapter delves into a range of automotive use cases, which are not only pertinent
to the automotive industry but also discussed in-depth as part of Work Package 1 of
the QuantumRISC Project. By examining these use cases, we aim to gain valuable
insights into the diverse applications and challenges encountered within the automotive
domain.

Secure Session Establishment

In the automotive industry, the effective management and control of numerous devices
connected to a backend system over IP-based networks, be it local, wide-area, or
mobile, necessitate the establishment of a secure channel to ensure confidential and
authentic communication. This is of paramount importance for various crucial use
cases, such as fleet management of cars or trucks, the collection and aggregation of
sensor data. These use cases heavily rely on IP-based communication protocols due
to their inherent scalability and ability to accommodate the required services. By
employing secure channels, automotive companies can safeguard sensitive information,
ensure the integrity and authenticity of data, and mitigate potential threats posed by
unauthorized access or malicious activities. This is particularly critical in industries
where the consequences of compromised communication could lead to severe financial
losses, safety hazards, or disruptions in critical infrastructure. Secure communication

Evaluation, integration and demonstration of use cases
Introduction 7

backend

backend

client

client

establish session key and mutually authenticate

secured communication channel

Figure 3.1.: Sequence diagram of the Session-based Secure Channel use case [21].

channels facilitate the secure transmission of data between backend systems and
connected devices, allowing for effective management, monitoring, and control of
various automotive applications. They enable real-time access to vehicle telemetry,
remote diagnostics, software updates, and control commands, while maintaining data
confidentiality, authentication, and integrity. In summary, establishing secure channels
in the automotive domain is vital to ensure confidential and authentic communication,
protect sensitive data, and enable efficient management and control of connected
devices. By leveraging scalable IP-based communication protocols, automotive companies
can effectively address the requirements of diverse use cases, providing a robust
foundation for reliable and secure operations in the automotive world.

Secure Software Download

The use case of a secure download mechanism plays a vital role in ensuring that solely
authenticated software is flashed onto an Electronic Control Unit (ECU). By utilizing
asymmetric signatures, the mechanism effectively prevents attackers from flashing
manipulated software onto an ECU. The signature, accompanied by the software
to be flashed, undergoes the process of being signed with a private key within a
trusted environment, typically the backend. The corresponding public key, essential for
the verification process, must be enrolled in the ECU and securely stored in tamper-
protected storage or has to be encrypted with a secured symmetric key. In the process
of flashing software, the ECU typically initiates a dedicated bootloader, which serves as
an intermediary stage. The bootloader, situated within the ECU, receives the software
from a predetermined source, such as the communication unit or the onboard diagnosis
interface. Subsequently, the software is downloaded into the ECU’s memory, and the
boot flags are adjusted accordingly. As an integral part of the bootloader, the secure
software download mechanism performs a crucial signature verification step before
proceeding with the flashing process. Only upon successful signature verification,
indicating the authenticity and integrity of the software, does the bootloader proceed
to flash the software onto the ECU. By implementing the secure download mechanism,
which leverages asymmetric signatures and integrates it within the bootloader, the

Evaluation, integration and demonstration of use cases
Selection of use cases 8

Backend

Backend

ECU

ECU

sign software update

Signed software update

verify signed software update

Update valid/invalid response

Figure 3.2.: Sequence diagram of the secure software download use case [21].

research ensures that exclusively authenticated software, validated through thorough
signature verification, is flashed onto the ECU. This mechanism serves as a fundamental
security measure, effectively mitigating the risk of manipulated software infiltration
and upholding the integrity and reliability of the ECU’s functionality.

Secure Access Control

Secure access control is a critical requirement in automotive ECUs to limit access
to specific services and data, such as flashing operations. Only authorized entities,
including manufacturers and car service stations, should be able to unlock these
operations.
By implementing challenge-response schemes, only authorized entities can access

specific services and data, safeguarding against unauthorized use and potential security
breaches. Furthermore, the adoption of these cryptographic techniques, such as
signatures, MACs, and encryption, enhances overall system security by ensuring the
authenticity and integrity of communication. Additionally, the integration of these
schemes with industry-standard architectures like AUTOSAR facilitates compatibility
and promotes the adoption of secure access control mechanisms in automotive systems.
Implementing and evaluating these schemes in a demonstrator allows for practical
validation of their effectiveness and suitability in real-world automotive environments,
paving the way for enhanced security measures in future automotive systems.

Evaluation, integration and demonstration of use cases
Selection of use cases 9

Tool

Tool

ECU

ECU

Unlock Request

Generate random challenge

Random challenge seed

sign response

Response

verify signature

Unlock granted

Figure 3.3.: Sequence diagram of the secure unlock use case [21].

3.3. Selection of PQC Algorithm

In this section, we delve into the selected post-quantum cryptography (PQC) algorithms,
CRYSTALS-Dilithium and CRYSTALS-Kyber, and provide an overview of their functional-
ity. CRYSTALS-Dilithium is a PQC signature scheme that offers secure digital signatures
and CRYSTALS-Kyber is a PQC key encapsulation mechanism (KEM) for the secure
establishment of a shared secret. Further details on the comparison of these algorithms
can be found in work package 2 [19], providing insights into their performance, com-
putational requirements, and resistance against potential attacks.

3.3.1. CRYSTALS-Dilithium - Signature Scheme

CRYSTALS-Dilithium [13] is a post-quantum cryptographic algorithm that belongs
to the family of lattice-based cryptography [17]. It is designed to provide secure
digital signatures that are resistant to attacks by both classical and quantum computers.
The algorithm relies on the mathematical principles of lattice theory and hardness
assumptions related to certain computational problems in lattices. In CRYSTALS-
Dilithium, the underlying mathematical structure is a high-dimensional lattice, which

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 10

can be thought of as a periodic arrangement of points in space. These lattices possess
unique mathematical properties that make certain computational problems, such as
the Shortest Vector Problem (SVP) and the Learning With Errors (LWE) problem,
computationally difficult to solve [13]. The security of CRYSTALS-Dilithium is based
on the hardness of these lattice problems. Specifically, the algorithm utilizes a carefully
constructed lattice and exploits the difficulty of finding short lattice vectors within this
lattice. By introducing noise and randomness into the lattice, CRYSTALS-Dilithium
creates a mathematical puzzle that can only be solved with knowledge of a secret key.
The three procedures key generation, signing and verification are shortly introduced.
For further information and more in-depth analysis, we refer readers to the paper titled
“CRYSTALS-Dilithium: Algorithm Specifications and Supporting Documentation” [13].

Key Generation
The Dilithium key generation process begins with the random generation of vectors
d and . These vectors play a crucial role in subsequent steps. With d generates a
9 × : matrix � each of whose entries is a polynomial in the ring '? = /? [-]/(-< + 1).
Afterwards, the algorithm samples random secret key vectors A1 and A2 [13]. Each
coefficient of these vectors is an element of '? with small coefficients of size at most
[. Finally, the second part of the public key is computed as B = �A1 + A2. All algebraic
operations in this scheme are assumed to be over the polynomial ring '?. Usually the
calculation �A1 is accomplished with an inverse NTT (Number Theoretical Transform)
operation. To accomplish the size reduction, the key generation algorithm outputs
(B1, B0) := %=E4@2'=C<3?(B, 3) as the public key instead of B. Further reduction can
now be achieved with a CRH (Collision resistant hash) of d and B1. The functions
ExpandMask, ExpandA and CRH are usually implemented by a SHAKE-128 or SHAKE-
256 [20] hashing algorithm. For the algorithm parameters see Table 3.1.

Algorithm 1 Key Generation [13]
1: d← {0, 1}256
2: ← {0, 1}256
3: (A1, A2) ← (:[× (9[
4: � ∈ '9×:? := �F>0<3�(d)
5: B := �A1 + A2
6: (B1, B0) := %=E4@2'=C<3?(B, 3)
7: B@ ∈ {0, 1}384 := �'� (d ‖ B1)
8: return (>9 = (d, B1), A9 = (d, , B@, A1, A2, B0))

Signing Procedure
In the signing algorithm, a masking vector of polynomials, denoted as G, is generated.
The coefficients of y are chosen to be less than W1. The parameter W1 is strategically
determined to ensure that the resulting signature does not expose the secret key
(achieving zero-knowledge), while still maintaining resistance against forgery. By
computing Ay, the “high-order” bits of the coefficients in this vector are extracted and
represented as E1. Each coefficient E in �G can be expressed in a canonical form

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 11

as E = E1F2W2 + E0, where the absolute value of E0 is ±W2. The challenge, denoted
as 2, is created by hashing the message and E1. The resulting polynomial 2 is an '?
polynomial with exactly 60 ±1’s and the remaining coefficients set to 0. This distribution
is chosen to ensure that 2 has a small norm and originates from a domain larger than
2256. The potential signature, denoted as H, is then computed as the sum of G and
the element-wise product of 2 and the secret key A1. However, directly outputting H
at this stage would compromise the security of the signature scheme by revealing the
secret key. To address this issue, rejection sampling is employed. The parameter V is
set as the maximum possible coefficient of 2A7. Since c has 60 ± 1’s and the maximum
coefficient in A7 is 4B0, it is evident that V±60[. If any coefficient of z exceeds W1− V, the
signing procedure is rejected, and a restart is initiated. Additionally, if any coefficient
in the low-order bits of �H − 2B exceeds W2 − V, the procedure is also restarted. The first
check ensures security, while the second is necessary for both security and correctness.
The signing procedure iterates through a while loop until both conditions are met.
The parameter values are carefully selected to ensure that the expected number of
repetitions is reasonably low, typically ranging between 4 and 7, depending on the
specific implementations.

Algorithm 2 Signing Procedure [13]
Input: (sk, M)

1: � ∈ '9×:? := �F>0<3�(d)
2: ` ∈ {0, 1}384 := �'� (B@ ‖ ")
3: ^ := 0

4: (H, ℎ) :=⊥
5: d′ ← {0, 1}384 := �'� (‖ `) (or d′ ← {0, 1}384 for randomized signing)
6: while (H, ℎ) =⊥ do
7: G ∈ (:W1−1 := �F>0<3"0A9(d′, ^)
8: E := �G

9: E1 := �76ℎ�7BA?(E, 2W2)
10: 2 ∈ �60 := SHAKE-256(` ‖ E1)
11: H := G + 2A1
12: (@1, @0) := �42=;>=A4?(E − 2A2, 2W2)
13: if ‖H‖∞ ≥ W1 − V or ‖@0‖∞ ≥ W2 − V or @1 ≠ E1 then
14: (H, ℎ) :=⊥
15: else
16: ℎ := "094�7<B?(−2B0, E − 2A2 + 2B0, 2W2)
17: if ‖2B0‖∞ ≥ W2 or the # of 1’s in ℎ is greater than l then
18: (H, ℎ) :=⊥
19: end if
20: end if
21: ^ := ^ + 1
22: end while
23: return f = (H, ℎ, 2)

Verification Procedure

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 12

The verifier initially computes E′1 as the “high-order” bits of Az - ct and proceeds to
accept the signature if all coefficients of z are less than W1 − V, and if c matches the
hash of the message and E′1. Let us examine why the verification process is effective,
specifically regarding the equality �76ℎ�7BA(�H − 2B, 2W2) = �76ℎ�7BA(�G, 2W2).

�76ℎ�7BA(�G, 2W2) = �76ℎ�7BA(�G − 2A2, 2W2)

The key observation is that �H − 2B = �G − 2A2. Thus, our main objective is to
demonstrate that ‖!=E�7BA(�G = 2A2, 2W2)‖∞ < W2 = V for a valid signature. Given that
the coefficients of 2A2 are smaller than V, adding 2A2 does not introduce any carries that
would increase the magnitude of low-order coefficients to at least W2. As a result, the
Equation holds true, ensuring correct verification of the signature.

Algorithm 3 Verify Procedure [13]
Input: (pk, M, f = (H, ℎ, 2))

1: � ∈ '9×:? := �F>0<3�(d)
2: ` ∈ {0, 1}384 := �'� (�'� (d ‖ B1) ‖ ")
3: E′1 := *A4�7<B?(ℎ, �H − 2B1 · 23 , 2W2)
4: return ‖H‖∞ < W1 − V and 2 = SHAKE-256(` ‖ E′1) and # of 1’s in h is ≤ E

Public key 1184 (Bytes)
Secret key 2800 (Bytes)
Signature 2044 (Bytes)
#Signatures ∞
? 8380417

3 14

W1 (? − 1)/16
W2 W1/2
(9, :) (4, 3)
[6

V 325

Table 3.1.: Parameter of Dilithium2 (medium).

3.3.2. CRYSTALS-Kyber - Key encapsulation mechanism (KEM)

CRYSTALS-Kyber [4] is a PQC key encapsulation mechanism that also belongs to the
family of lattice-based cryptography like Dilithium. It is designed to provide a secure
establishment of a shared secret and encryption functionalities in the presence of
potential quantum adversaries. The algorithm utilizes mathematical structures called
lattices and relies on the hardness of solving the learning-with-errors problem in module
lattices (MLWE [16]). CRYSTALS-Kyber offers a balance between security and efficiency,
making it suitable for implementation in resource-constrained environments.

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 13

The algorithm of Kyber is split into two layers. The lower layer of the algorithm
consists of a public key encryption scheme (PKE) containing the functions for the key
generation (KeyGen), encryption (Enc), and decryption (Dec). The upper layer of Kyber
implements the KEM with the three analog functions. Therefore, the function PKE.Enc
is the encryption function of the public key encryption scheme and KEM.Enc is the
encapsulation function of the KEM. In the following we resolved the dependencies from
the KEM layer to the PKE layer by implementing the PKE algorithm in the depicted
KEM algorithm denoted by a comment on the right side in Algorithm 4, 5, and 6.

Key Generation
The simplified key generation of Kyber is shown in Algorithm 4. The secret key A9
consists of a vector A of polynomials with small coefficients, randomly chosen. The public
key >9 consists of two components, a matrix of random polynomials denoted as � and a
vector of polynomials represented as B. The matrix � is generated using a random seed
d and the extendable output function (XOF) SHAKE-128. To compute the polynomial
vector B, an additional error vector 4 is necessary. This error vector also contains
polynomials with small coefficients. By performing a matrix-vector multiplication and
addition B = � ◦ A + 4, we can obtain the value of B. The sampling of vector A and 4

consists of a CBD (Centered Binomial Distribution) function [4] and a SHAKE-256
operation used as a pseudo random function (PRF). The �<2=34 function refers to the
serialization of polynomials. For the parameters 9, ?, [1, [2 see Table 3.2. The security
lies in the difficulty of reconstructing the secret value of A from the given pair (�, B).
In fact, the recovery of A would require an attacker to solve the module-learning-with-
errors (MLWE) problem, upon which this system is constructed. The MLWE problem is
anticipated to be challenging, even for quantum computers, which is precisely why it is
utilized in PQC.

Algorithm 4 KEM.KeyGen [4]
Output: Public key pk
Output: Secret key sk

1: H ← {0, 1}256
2: 3 ← {0, 1}256 ⊲ Start PKE.KeyGen
3: (d, f) := SHA3-512(3)
4: Generate matrix �̂ ∈ '9×9? in NTT domain
5: Sample A ∈ '9? from �[1
6: Sample 4 ∈ '9? from �[1
7: Â := #)) (A)
8: 4̂ := #)) (4)
9: B̂ := �̂ ◦ Â + 4̂

10: >9 := (�<2=3412(B̂ mod +?) ‖ d)
11: A9′ := �<2=3412(Â mod +?) ⊲ End PKE.KeyGen
12: A9 := (A9′ ‖ >9 ‖ SHA3-256(>9) ‖ H)
13: return (>9, A9)

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 14

Encapsulation Procedure
In the encapsulation step, first a randommessage; gets generated and is then encrypted
using the underlying encryption function PKE.Enc of Kyber. Similar to other public key
encryption systems, the message is encrypted using the public key >9 and the resulting
ciphertext 2 is decrypted using the secret key. The simplified encapsulation scheme is
shown in Algorithm 5. For the encryption, first the matrix � gets generated using the
seed d obtained by the public key. Then we need to generate some error and noise
vectors @ and 41 and the error polynomial 42, which are needed for the encryption and
are sampled just like in the key generation Algorithm 4. The polynomials of @, 41, and 42
possess small coefficients, thus resulting in small errors. These random errors terms are
freshly generated anew each time. The resulting ciphertext consists of the polynomial
vector C and the polynomial D. The calculation of polynomial vector C = �)@ + 41 adds
noise to the matrix �. In the calculation of polynomial D = B)@ + 42 + �42=;>@4AA?(;, 1)
the message ; gets encrypted using B from the public key and some error terms. The
�=;>@4AA and �42=;>@4AA functions of the algorithm are responsible for the scaling of
the coefficients of the polynomials. This is done to perform the LWE error correction
during the encryption and decryption, and to discard low-order bits in the ciphertext
to reduce the size of the ciphertext [4]. During the encryption phase, the function
�42=;>@4AA is applied to the message ; to create error tolerance gaps prior to the
adding of errors. The �42=34 function refers to the deserialization of byte arrays to
polynomials. The operations take place with NTT (number-theoretic transform) to
perform efficient multiplications in '? [4]. The shared key is calculated using a chain
of hash computations depended on the secret message ;, the public key >9, and the
ciphertext 2. For the parameters <, 9, et al. see Table 3.2.

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 15

Algorithm 5 KEM.Enc [4]
Input: Public key pk
Output: Ciphertext c
Output: Shared key K

1: ;← {0, 1}256
2: ;← SHA3-256(;)
3: (, @) := SHA3-512(; ‖ SHA3-256(>9))
4: B̂ := �42=3412(>9) ⊲ Start PKE.Enc
5: d := >9 + 12 · 9 · </8
6: Generate matrix �̂ ∈ '9×9? in NTT domain
7: Sample @ ∈ '9? from �[1
8: Sample 41 ∈ '9? from �[2
9: Sample 42 ∈ '? from �[2

10: @̂ := #)) (@)
11: C := #))−1(�̂) ◦ @̂) + 41
12: D := #))−1(B̂) ◦ @̂) + 42 + �42=;>@4AA?(�42=341(;), 1)
13: 21 := �<2=343C (�=;>@4AA?(C, 3C))
14: 22 := �<2=343D (�=;>@4AA?(D, 3D)) ⊲ End PKE.Enc
15: 2 := 21 ‖ 22
16: := SHAKE-256(‖ SHA3-256(2))
17: return (2,)

Decapsulation Procedure
In the decapsulation step, the ciphertext 2 gets decrypted with the secret key A9 using
the underlying decryption function PKE.Dec of Kyber. The simplified decapsulation
scheme is shown in Algorithm 6. For the decryption, first the polynomial vector C and
the polynomial D are extracted from the ciphertext 2, and the secret polynomial vector
A is extracted from the secret key A9. The decryption is achieved by subtracting the dot
product of the transpose of A and C from D, as expressed by the equation ;′ = D − A)C.
The result ;′ is a noisy polynomial. To get rid of the added noise (resp. small errors)
the function �=;>@4AA is applied to the result to revert the added error tolerance from
the �42=;>@4AA during the encryption. After that, the function �<2=34 is applied to
convert the polynomial to a byte array. As in the encapsulation phase, the shared key
 is computed using the encryption function PKE.Enc from Algorithm 5 (line 4-14)
and the chain of hash computations. Kyber allows decapsulation failures to increase
performance with a claimed failure probability of X = 2−139 [4].

Evaluation, integration and demonstration of use cases
Selection of PQC Algorithm 16

Algorithm 6 KEM.Dec [4]
Input: Ciphertext c
Input: Secret key sk
Output: Shared key K

1: >9 := A9 + 12 · 9 · </8
2: ℎ := A9 + 24 · 9 · </8 + 32 ∈ {0, 1}256
3: H := A9 + 24 · 9 · </8 + 64
4: C := �42=;>@4AA?(�42=343C (2), 3C) ⊲ Start PKE.Dec
5: D := �42=;>@4AA?(�42=343D (2 + 3C · 9 · </8), 3D)
6: Â := �42=3412(A9)
7: ;′ := �<2=341(�=;>@4AA?(D − #))−1(Â) ◦ #)) (C)), 1)) ⊲ End PKE.Dec
8: (′, @′) := SHA3-512(;′ ‖ ℎ)
9: 2′ := % �.�<2(>9, ;′, @′) ⊲ Calls PKE.Enc() from Algo. 5

10: if c = c’ then
11: return := SHAKE-256(′ ‖ SHA3-256(2))
12: else
13: return := SHAKE-256(H ‖ SHA3-256(2))
14: end if

Public key Secret key Ciphertext < 9 ? [1 [2 (3C, 3D) X

800 (Bytes) 1632 (Bytes) 768 (Bytes) 256 2 3329 3 2 (10, 4) 2−139

Table 3.2.: Parameter of Kyber512.

3.4. Hardware selection

This section examines the Infineon TriCore TC38xQPmicrocontroller and its significance
in the automotive industry as well as the suitability for post-quantum cryptography
applications. The microcontroller has been chosen for its widespread adoption in
various projects, its ability to deliver sufficient performance, and its support for the
AUTOSAR platform in automotive applications.

3.4.1. Infineon Tricore TC38xQP

The Infineon Tricore TC38xQP microcontroller has garnered significant attention and
adoption within the automotive industry owing to its formidable features and capabilities
tailored specifically for automotive applications. This microcontroller finds extensive
application in diverse areas, including engine management systems, transmission
control units, and safety systems such as Anti-Lock Braking Systems (ABS) and Electronic
Stability Control (ESC). Renowned for its robust processing power, real-time execution
environment, and fault tolerance, the TC38xQP empowers precise control and reliable
operation of automotive systems. Notably, its low power consumption and compact
form factor contribute to overall system efficiency. However, it is crucial to acknowledge

Evaluation, integration and demonstration of use cases
Hardware selection 17

that the TC38xQP’s adoption is accompanied by certain considerations. Due to its dual
banking feature it is often used for Secure Software Downloads and Over the Air (OTA)
updates. The microcontroller’s higher cost compared to alternatives and the specialized
knowledge and tools required for programming and debugging are factors that warrant
attention. Nevertheless, the TC38xQP aligns seamlessly with AUTOSAR, a standardized
software architecture extensively used in the automotive domain. This integration with
AUTOSAR ensures portability, reusability, and maintainability of software components,
streamlining development processes and reducing time-to-market. In essence, the
TC38xQP emerges as a sought-after choice in the automotive industry, leveraging its
versatility, real-time performance, and compatibility with AUTOSAR to deliver efficient
and reliable automotive systems.
The TC38xQP is a 32-bit quad-core controller, with the following hardware details [2]:

• 300MHz clock speed

• 10MB Flash (ROM)

• 1.5MB SRAM

• 1 Gbit Ethernet

• 12xCAN FD, 2xFlexRay, 24xLINs, 6xQSPI , 2xI²C, 25xSENT 5xPSI, 1xHSSL, 3xMSC

• Support of floating and fixed point calculation

Evaluation, integration and demonstration of use cases
Hardware selection 18

4. AUTOSAR

AUTOSAR is a partnership of vehicle manufacturers, suppliers, service providers and
companies from the automotive electronics, semiconductor, and software industry. The
consortium was founded in 2003 and develops open industry standards for automotive
software architecture. The main goals of AUTOSAR incorporate the fulfilment of
future vehicle requirements, increasing scalability and flexibility to integrate and
transfer functions, re-use of software, and accelerate development and maintenance
[5]. AUTOSAR specifies two main standards Classic Platform [7] and Adaptive Platform
[6] besides other standards.

The consortium aims to standardize the interfaces between different modules within
a software stack, seeking to achieve abstraction from the underlying hardware. This
standardization enables faster development cycles and promotes higher code reusability
by decoupling software components from specific hardware platforms. By providing
a common framework and interface definitions, AUTOSAR fosters interoperability,
modularization, and portability across various automotive systems, ultimately enhancing
efficiency and flexibility in software development processes. In this research project
we use the AUTOSAR Classic Platform standard to implement the chosen use cases
with the specified cryptographic primitives. Classic Platform is based on the OSEK [14]
standard. The code is directly executed from ROM. All applications have the same
address space. Classic Platform is optimized for signal-based real-time communication
and uses a fixed task configuration.

4.1. Architecture

AUTOSAR Classic Platform employs a layered architecture and consists of the following
three basic layers, as shown in Figure 4.1:

• Basic Software layer (BSW)
The Basic Software layer is the lowest layer in the architecture. It is a standardized
software layer that provides standard ECU functionality e.g. OS, low level drivers,
bus-communication, diagnostics, cryptography etc. The BSW is again structured in
layers, the Microcontroller Abstraction Layer (MCAL), ECU Abstraction Layer, and
Services Layer. Some services like Complex Drivers and partly System Services
span over multiple layers. The provided services are accessible via the RTE
abstraction layer.

• Runtime Environment (RTE)
The RTE provides communication services to the application software of the
Application layer. It is responsible for the inter- and intra-ECU information

Evaluation, integration and demonstration of use cases
AUTOSAR 19

Application Layer

Runtime Environment

System Services

Memory
Hardware

Abstraction

Microcontroller
Drivers

Microcontroller

Memory Services Crypto Services Off-board
Communication

Services

Communication
Services

Onboard Device
Abstraction

Memory Drivers

I/O Hardware
Abstraction

Complex
Drivers

Crypto Hardware
Abstraction

Wireless
Communication
HW Abstraction

Communication
Hardware

Abstraction

Crypto Drivers Wireless
Communication

Drivers

Communication
Drivers

I/O DriversB
as

ic
 S

of
tw

ar
e

La
ye

r

Figure 4.1.: AUTOSAR Classic Platform layered software architecture [8].

exchange. Thus it represents the full interface for applications and makes them
independent from the mapping to a specific ECU.

• Application layer
The Application layer is the highest layer in the architecture and contains the
application software. The application software interacts with the RTE to use
func-tionalities of the BSW layer. It consists of Software Components and/or
Sensor/Actuator Components. Software Components are completely ECU inde-
pendent, while the latter are dependent on the specific hardware.

4.2. Crypto Stack

The Basic Software layer contains a Crypto stack. The Crypto stack provides standardized
cryptographic functionalities and services. Thus Software Components in the Application
layer and system modules in the BSW layer don’t need to implement cryptographic
primitives themselves, but can use the centralized Crypto stack available via the RTE
or in case of system modules directly. In AUTOSAR, a cryptographic primitive refers
to a fundamental cryptographic operation or building block that is utilized to provide
various security functionalities within the AUTOSAR software architecture. It serves as
a foundational component for implementing cryptographic algorithms and protocols.
Further details are given in Section 4.2.4.

The Crypto Stack consists of the Crypto Service Manager (Csm) [11], Crypto Interface
(CryIf) [10], and the Crypto Driver (Crypto) [9] module. Figure 4.2 depicts the
correlation of these modules in the Crypto stack, and their usage from the Application
level. Csm and CryIf are using configured channels to communicate with the respective
Crypto primitives, as further explained in the following subsequent sections.
The Key Manager (KeyM) module is additionally part of the Crypto Stack. The

security-related communication modules like Secure Onboard Communication (SecOC),
Transport Layer Security (TLS), and Internet Protocol Security (IPSec) belonging to

Evaluation, integration and demonstration of use cases
Crypto Stack 20

Figure 4.2.: Crypto Stack layered architecture [12].

the Communication Stack. Since they are not directly relevant to this research project
we omit them. In this project, the primary focus was on the practical implementation
of post-quantum algorithms, with a specific emphasis on the Crypto module within the
MCAL layer.

4.2.1. Crypto Service Manager

The Csm module is in the Service Layer and therefore the highest module in the Crypto
Stack. It supports algorithm independent service interface that makes it possible for
different applications to use the same service but with different underlying primitives
or schemes e.g. the service Hash with the primitive SHA2-256 or SHA3-513. The Csm
provides an interface for the RTE which can be used by a Software Component or the
API of the Csm can be directly called from a system module in the BSW layer. The Csm
employs two different concepts, a direct API mainly for key management services and
a job-based API mainly for cryptographic primitives. The main parts of the job-based
concept consists of a job and a prioritized queue. A job is composed of a referenced
cryptographic primitive, a referenced key, a process priority, and an assigned queue.
The job-based concept enables that multiple independent jobs can be processed in
separate prioritized queues. The direct API can only handle synchronous calls while
the job-based API can handle both synchronous and asynchronous calls. Depending on
the request of the Software Component the direct key management interface is called
and the request is forwarded to the CryIf module or a job is created with the given data
and pushed into the assigned queue.

4.2.2. Crypto Interface

The CryIf module lies between the Csm and Crypto module and provides abstraction
from the Crypto Driver. The CryIf module links a Crypto Driver Object to the Csm

Evaluation, integration and demonstration of use cases
Crypto Stack 21

module via a channel. In detail, the Csm maps one queue to a CryIf channel and the
CryIf maps one channel to a Crypto Driver Object. Through this abstraction the CryIf
enables that one Csm can map to multiple Crypto Driver Objects. Direct interface calls
are just forwarded to the specific Crypto Driver.

4.2.3. Crypto Driver

The Crypto Driver is an MCAL module and thus the lowest in the Crypto stack. It
contains the actual cryptographic primitives and key management algorithms. It also
provides the functionality for key storage and handling, which includes the definition
of the key structure with key elements. An instance of a Crypto Driver is called a
Crypto Driver Object (CDO). A CDO includes a specific set of primitives and has its
own independent workspace. Multiple CDOs can be configured that are independent
from each other. Only one primitive can be performed at a time per CDO. Each CDO
is mapped via a CryIf channel to the Csm module. The public interface of the Crypto
module is used by the CryIf to process/cancel jobs and for key management functions.
Then the CDO forwards the data to the actual crypto routine. The cryptographic
operations of a CDO can be implemented in hardware or in software.

4.2.4. Cryptographic primitive

Each CDO has a specific set of cryptographic primitives. A cryptographic primitive
is specified by a service, family, and mode. A primitive can be further refined by
configuring a secondary family.

• CryptoPrimitiveService is the basic class of cryptographic operations e.g. “Encrypt”
or “SignatureGenerate”.

• CryptoPrimitiveAlgorithmFamily specifies the cryptographic family of a service
e.g. AES or RSA.

• CryptoPrimitiveAlgorithmMode specifies the mode of the family. Different
modes can be available for one family e.g. ECB or CBC mode for the family AES.

• CryptoPrimitiveAlgorithmSecondaryFamily can be configured if the cryptographic
primitive needs an another cryptographic primitive like a “Hash” algorithm, e.g.
SHA2_512 for service “SignatureGenerate” with family RSA.

The context of a cryptographic primitive is stored in the workspace of a CDO. This
context contains all runtime data which is needed by the primitive during its processing.
Each CDO has its own workspace. The workspace is shared between the primitives.
Therefore, a CDO can only perform one cryptographic primitive at a time.

The input and output information of a cryptographic primitive is stored in a specific
data type called Crypto_JobPrimitiveInputOutputType (see Listing 4.1) defined
by AUTOSAR. The Csm is the first module of the Crypto stack which receives the
request for a Crypto Service as a function call. It receives the inputs and outputs as

Evaluation, integration and demonstration of use cases
Crypto Stack 22

function parameters for a specific Service and then fills the Crypto_JobPrimitive-
InputOutputType accordingly and forwards the request further through the Crypto
stack.

Listing 4.1: AUTOSAR 4.3.1 type definition of Crypto_JobPrimitiveInputOutputType.

1 Crypto_JobPrimitiveInputOutputType = {
2 inputPtr : const uint8*
3 inputLength : uint32
4 secondaryInputPtr : const uint8*
5 secondaryInputLength : uint32
6 tertiaryInputPtr : const uint8*
7 tertiaryInputLength : uint32
8 outputPtr : uint8*
9 outputLengthPtr : uint32*

10 secondaryOutputPtr : uint8*
11 secondaryOutputLengthPtr : uint32*
12 verifyPtr : Crypto_VerifyResultType*
13 mode : Crypto_OperationModeType
14 cryIfKeyId : uint32
15 targetCryIfKeyId : uint32
16 }

A cryptographic primitive is processed via a job. The state machine of a job is depicted
in Figure 4.3. After initialization of the Crypto Driver, the job is in the IDLE state and
no cryptographic primitive is processed at the moment. A job can be called with the
operation modes START, UPDATE, and FINISH.

• START: A new request of a cryptographic primitive is triggered with operation
mode START. All previous requests of the same job are canceled.

• UPDATE: In the operation mode UPDATE the cryptographic primitive expects
input data. The job can be called multiple times with this operation mode
consecutively to process large data. For some services like “Encrypt” or the
service “AEADEncrypt” ouput data is also possible.

• FINISH: This operation mode informs the Crypto Driver that all input data has
been fed and the cryptographic primitive can finalize calculations. The result
of the cryptographic operation is stored in the output buffers and job state is
switched to IDLE.

If an error occurs during the operation modes the job state switches to IDLE and all
internal data like input data and intermediate results are removed.
The call of each operation mode individually is called the “Streaming approach”.

Another possible operation mode is SINGLECALL which is a concatenation of START,
UPDATE, and FINISH. The operation mode SINGLECALL could improve performance,
because of less API calls and is intended for small data inputs, since it cannot call
UPDATE multiple times like in the “Streaming approach”.
All jobs are being processed via the function Crypto_ProcessJob(objectId,

job). This function performs the cryptographic primitive that is configured in the job

Evaluation, integration and demonstration of use cases
Crypto Stack 23

START

UPDATE

FINISHerror Error error

error

IDLE

EntryPoint

opmode_update opmode_finish

opmode_update

opmode_start

Active

JobState

Error E_OK

Initial

E_OK

Figure 4.3.: AUTOSAR Crypto job state machine simplified [9].

parameter. It provides a single interface for the Singlecall and Streaming approach.
The operation mode is set in the Crypto_JobPrimitiveInputOutputType (see
Listing 4.1) which is referenced by the job parameter.

A cryptographic primitive can be processed synchronously or asynchronously. For
synchronous processing the caller is blocked until the job is fully completed by the CDO.
Whereas for asynchronous processing the caller only initiates the processing of a job
but is then free for other tasks. The Crypto Driver Object informs the Caller when the
job is finished via “Callback” functions.

4.3. Communication Stack

The Basic Software Layer contains a Communication Stack (Com Stack). The Com
Stack provides services for communication via hardware interfaces e.g. inter ECU
communication. It is capable of various communication and network protocols like
Ethernet/IP, CAN, LIN, and FlexRay. A simplified depiction is illustrated in Figure
4.4. For this project the AUTOSAR Ethernet Stack and TCP/IP Stack is used for the
communication with the Server.
In the lowest layer the Ethernet Stack is used. It contains the Ethernet Driver

(Eth Driver) in the Microcontroller Abstraction Layer and the Ethernet Interface (Eth
Interface) in the ECU Abstraction Layer. The Ethernet Stack represents the software
driver of the Ethernet hardware interface. Above the Ethernet Stack the TCP/IP Stack
is employed in the Services Layer. It receives the IP datagrams from the Ethernet Stack
and contains modules for IP v4/v6, ICMP, ARP, UDP, TCP, and DHCP protocol.

The Socket Adapter (SoAd)module is above the TCP/IP Stack and converts UDP/TCP
sockets to PDUs. A PDU (Protocol Data Unit) is a basic unit for data transfer. It is used
as an abstraction of the specific communication protocols.

One central module of the Com Stack is the PDURouter (PDUR). Its main responsibility

Evaluation, integration and demonstration of use cases
Communication Stack 24

Application Layer

RTE

Com

 Software
 Component A

Com
Services

PDU Router

SoAd

LdCom Dcm

Eth Interface

Eth Driver

IPDU multiplexer

FlexRay TP CAN TP LIN TP

 Software
 Component B

Com HW
Abstraction

Com Drivers

PDUs PDUs PDUs

Signals Byte stream

PDUs

IP Datagrams

Eth. Frame

PD
U

s

FlexRay If

FlexRay
Driver

CAN If

CAN
Driver

LIN If

LIN Driver

PDUs PDUs PDUs

TcpIp

Messages,
Streams

Figure 4.4.: AUTOSAR Classic Platform simplified Communication Stack.

is the routing of PDUs. The PDU Router has various routing operations like unicast
from one module to another module, multicast from Com module to communication
interface modules, and gateway functionality from a communication interface module
to other communication interface modules. All modules below the PDUR are network
protocol dependent, while all modules above are network protocol independent.

The Communication (Com) module is a network protocol independent module. It is
the contact point for a Software Component via RTE and is responsible for the conversion
of Signals to PDUs called signal packing. A Signal is a basic communication object like
a primitive data type (e.g. int, char, etc.). Signals can also be grouped to automatically
transmit complex data types like C-structures. The Large Data Communication
(LdCom) module is similar to the Com module, but with the difference that it can
handle large messages efficiently, without the overhead of Com signal packing. The
data received by the RTE is a byte stream and can be directly converted to PDUs without
signal packing, filtering, internal buffering, or transmission modes. The LdCom module
is mainly used for Ethernet communication.

Evaluation, integration and demonstration of use cases
Communication Stack 25

5. D6.1 - Demonstrator description

5.1. Goals

The demonstrator should visualize the results of post-quantum cryptography used in
real-world embedded hardware devices, e.g. using Tricore or RISC-V chips. Thereby, the
user should be able to understand the benchmarking results without further experience
in cryptography. In our demonstrator, the PQC algorithms are integrated into the
crypto-stack of the AUTOSAR Classic platform, that is also used in production. Thus,
we can provide an almost real-world scenario on which the evaluation results are
based. Besides the PQC algorithms, the user has the possibility to start pre-quantum
algorithms such as RSA or ECC. The benchmarking results are illustrated using an
easily-understanding diagram, showing how many microseconds each operation of
the executed algorithms has taken. This allows the user to understand the differences
between pre- and post-quantum algorithms and their individual pros and cons. To
better understand the use cases, additional information is provided such as sequence
diagrams and a detailed description including the threat model.

5.2. Architecture

The demonstrator consists of three components as visualized in fig. 5.1, namely a
backend, a frontend and a target device. All these components have been containerized
and can easily be started using Docker-Compose. The frontend communicates with the
backend to send use cases requests, which are forwarded to the selected target by the
server. That target executes the respective use case, whereby both the backend and the
embedded device perform some cryptographical computations, e.g., verification/gener-
ation of a digital signature. The target device returns the measured execution time on
each request, while the backend aggregates those information and its own timings and
sends them back to the frontend for visualization.

The backend is responsible for generating the keys that are necessary to perform the
cryptographic algorithms used in the respective use cases. For the sake of simplicity (and
since this is a demo environment), the backend-server also generates the public-private
key pairs for the targets, whereas in a production environment the target’s keys would
need to be generated in a more secure way (e.g., by itself or embedded at production).
Furthermore, each target receives the same key-pair which is okay in a benchmarking
scenario, but would be highly insecure in the real-world. Those keys are distributed to
the target once it connects to the server. All messages are serialized using protobuf (cf.
section 5.5.1), whereby the connection to the target uses TCP and the connection to
the frontend is based on UDP.

Evaluation, integration and demonstration of use cases
D6.1 - Demonstrator description 26

Container

Frontend (Client)

(Python, HTML, CSS, JavaScript)

Backend (Server)

(C, OpenSSL, liboqs, protobuf, GLib)

RSA / ECC PQC

Target n RSA / ECC

PQCRISC-V

Target 1
(C, AUTOSAR, protobuf)

RSA / ECC

PQCTriCore

TCP

UDP

Figure 5.1.: Architecture of the Demonstrator

The backend has a dedicated UDP socket for the frontend and accepts simultaneous
target connections using TCP sockets. We designed the backend in a dynamic way that
allows an arbitrary number of target devices that can be reached by the frontend. A
backend-target connection is established by sending an initialization message from
the target device to the server. This message contains an unique identifier (UID) that
is used to map the frontend requests to the respective target device. Once the server
detected a new device, it generates a public-private key-pair and sends it to the target.

The backend-frontend connection is initiated in a similar way by sending a use case
request messages to the specific server. This request basically contains the target that
should execute the algorithms, the algorithms that should be benchmarked and the
use case. The server executes the request and returns the timings of the algorithms
to the frontend. The frontend displays a visual chart based on the timings to give a
comparison between the algorithms.

5.3. AURIX TC38xQP Demonstrator

The integration of the Aurix Tricore TC38xQP chip into an automotive system involves
various components and processes to establish efficient communication and functionality.
The chip is connected to the system using a 1Gbit Ethernet interface. Notably, the
use of two different Ethernet transceivers, namely Lantiq and Realtek, leads to the
implementation of two distinct software versions to accommodate the specific re-
quirements of each transceiver. In addition to the Ethernet connection, the chip is
also connected to a test PC via the Lauterbach debugger, enabling debugging and
testing functionalities during the integration process. For the realization of the basic
functionaility the EB tresos Basic Software is used. All modules are based within
the context of AUTOSAR, specifically leveraging AUTOSAR Release 4.0.3, 4.3.0 and
AUTOSAR Release 4.2.2 for MCAL modules. This integration ensures compliance with
standardized interfaces and protocols, facilitating seamless interoperability with other
AUTOSAR components. The integration process is facilitated by utilizing EB Tresos
Studio, a tool that streamlines the integration and utilization of these modules within
the overall system architecture. This integration enhances the system’s functionality

Evaluation, integration and demonstration of use cases
AURIX TC38xQP Demonstrator 27

and capabilities.
The system employs a task-based architecture consisting of eight tasks that handle

various system functions. Notably, the Communication task and Rte time task require a
stack size of 8192 bytes to ensure smooth execution and efficient utilization of system
resources. To enhance the system’s robustness, an integration of MicroOs, a micro-
kernel for AutoCore Os, is employed. This integration provides interrupt and exception
handling capabilities, further bolstering the system’s reliability.
In terms of security, PQC (Post-Quantum Cryptography) algorithms are integrated

into the Crypto Software Module provided by Elektrobit. These algorithms, based
on Crypto Module Version 2, enable secure communication within the automotive
system. Further information are provided in the section Implementation of traditional
cryptographic primitives

To optimize message handling, the integration of the protobuf library into AUTOSAR
is adopted. The open-source library nanopb[3] is utilized, offering lightweight and
memory-efficient message serialization and deserialization. Notably, this integration
eliminates the need for explicit memory allocation as all binary messages of unspecified
length are handled seamlessly by the integrated callback functions.
The communication flow within the system follows a defined sequence. After

initialization, the system attempts to establish a connection with a specific IP address
(e.g., 192.168.88.73) and a designated port. Upon successful connection, the subsequent
chapter Demonstrator Sequence is executed, enabling the system to proceed with its
intended operations. Throughout the communication process, all communication events
are directed to the callback function of the LdComModule. Furthermore, the integration
of the Crypto API and protobuf components further enhances the communication
capabilities of the system, ensuring secure and efficient data exchange.

5.4. Demonstrator Sequence

An abstract overview about the software flow and communication between server, client
and target is given in fig. 5.2. The server starts by generating the necessary keys for RSA,
ECC, Kyber and Dilithium. Since this is a non-productive demonstration environment,
it has been decided that the public-private key pairs for the target are also generated by
the backend. After the key generation, the server opens a UDP socket for the frontend
and in another thread a TCP socket. The TCP socket creates one thread per target once
it detects a new connection. The new threads awaits an initialization message containg
the UID of the target. Afterwards, the backend sends the packed public-private keypairs
to the target and stores the target’s UID in a list. After unpacking them, the target
is in an idle state awaiting a use case sent by the backend. The frontend connects to
the UDP socket of the backend and after the user selected a use case, it sends this
information along with the selected algorithms to the backend. The backend unpacks
the received message and iteratively processes each algorithm. To do so, it performs
the server-side computation, selects the respective target and sends a request to it. The
target performs the target-side computation of the received algorithm, sends the time
needed for the execution to the backend and returns to the idle state where it awaits a

Evaluation, integration and demonstration of use cases
Demonstrator Sequence 28

new use case from the backend.
The server receives themeasured time of the target and adds it to the total computation

time. If there are any more algorithms that should be benchmarked, they will be
processed as described before. If that is not the case, the total execution time is sent
back to the frontend.
The frontend receives this information and visualizes it in a user-friendly diagram.

Finally, it returns to a state awaiting user input.

5.5. Server / Backend

In detail, the server is implemented in C and has been containerized to be executed
in any environment, whereby the image is based on Ubuntu. It requires OpenSSL
(min. version 1.1.1f) to perform cryptographic operations in use cases where RSA and
ECC algorithms are used. For the PQC algorithms, the open source library liboqs1 is
integrated since it supports Kyber512 and Dilithium2 by default. The communication
between the devices are handled by standard UDP and TCP network sockets. The
server offers one UDP network socket for the frontend and TCP sockets for the targets.
The messages within this communication are serialized with protobuf-c2, which is a
pure C implementation of Protocol Buffers.

5.5.1. Communication protocol

The communication between server, frontend and target is performed via network
socket, where the data is serialized with protobuf. By using protobuf, the data is
structured in a previously defined format and interfaces are automatically generated by
using the protobuf compiler. Therefore, the allowed messages, types and lengths are
equivalent in all software components - independent of OS and programming language.
The protobuf-c compiler takes the .proto-file and generates one header and one

source code file containing C-structs and functions. Within the implementation, one
can use the generated functions to initialize, pack, unpack and free the messages. The
transformation between host and endianess is also covered by protobuf. However,
protobuf does not define how to send the data over the network. Therefore, the size of
the messages has to be transmitted prior to the data. By using the MSG_PEEK option
of POSIX sockets, those bytes representing the length of the protobuf message can be
retrieved without accepting the message.
Listing 5.1 shows general messages of our protobuf definition that are used in the

demonstrator implementation. The frontend creates a Front2Back message, which
defines the use case, the plaintext size, the algorithms that shall be executed and
which target devices to be used. During the execution, the server creates several
Back2Target messages to send data to the target. The data types KeyDist, SSD,
SAC, SSE are other protobuf structures that contain the information for respective use
cases or for the key distribution. The boolean endConnection defines whether the

1https://github.com/open-quantum-safe/liboqs
2https://github.com/protobuf-c/protobuf-c

Evaluation, integration and demonstration of use cases
Server / Backend 29

Frontend

start()

wait for user selection

send chosen usecase and
algorithms to server

wait for measured timings from
server

Server/Backend

main()

keyGeneration()

Frontend Network Thread

wait for target connection

pack usecase message for
target, send it to target

wait for answer from target

check if more algorithms are
chosen

pack measured execution
time and send to client

go back to wait for usecase
message

Target

connect to backend

wait for key message from
server

unpackKeys()

wait for usecase start

start()

unpackUsecaseMsg()

runAlgorithm()

send measured time for
execution to server

visualize timings on frontend

no

go back to wait for usecase
message

Target Master Thread

spawn target thread

packKeys(), send them to
target

wait for usecase message
from client

add target to "target list"

unpackUsecaseMsg()

for chosen usecase: start
chosen algorithms on server

side

yes

retrieve target from "target list"

Send Target UIDAwait Initialization Message

Figure 5.2.: Sequence diagram of the components

Evaluation, integration and demonstration of use cases
Server / Backend 30

connection between target and backend should be terminated. The target uses the
Target2Back structure to return the measured time of its executed algorithm. Those
timings are stored within Timing structures and returned by using the Back2Front
type. The keyword repeated allows multiple values of an element (like an array),
where oneof allows only one element of the given types.

Listing 5.1: Cutout of protobuf definition in qrisc_demo.proto

1 syntax = ”proto3”;
2

3 message Front2Back {
4 string usecase = 1; // SSD, SAC, SSE
5 uint32 msgSize = 2; // message size in bytes
6 repeated Algorithm algoName = 3; // RSA, ECC, ECDH, Kyber512, ←↪

Dilithium2
7 string target = 4; // target names (tricore)
8 }
9

10 message Back2Front {
11 string usecase = 1;
12 repeated Timing results = 2;
13 }
14

15 message Back2Target {
16 oneof usecase {
17 KeyDist keyDist = 1;
18 SSD ssd = 2;
19 SAC sac = 3;
20 SSE sse = 4;
21 bool endConnection = 5;
22 };
23 }
24

25 message TargetInitRequest {
26 string targetName = 1; // target name (e.g. tricore)
27 }
28

29 message Target2Back {
30 Algorithm algoName = 1; // RSA, ECC, ECDH, Kyber512, Dilithium←↪

2
31 uint32 exectime = 2;
32 }
33

34 message Timing {
35 Algorithm algoName = 1; // RSA, ECC, ECDH, Kyber512, Dilithium←↪

2
36 uint32 timingSign = 3;
37 uint32 timingVerify = 4;
38 uint32 timingCom = 5;
39 uint32 timingEnc = 6;
40 uint32 timingDec = 7;
41 }

Evaluation, integration and demonstration of use cases
Server / Backend 31

5.6. Frontend

The frontend is an independent application, whereby the backend communication has
been implemented in Python and the graphical interface in HTML, CSS and JavaScript.
It uses the Python library Eel3, offering a standalone web service supporting callbacks
between Python and JavaScript code, so that interactions triggered on the user interface
can be handled by Python functions and the other way around, python functions can
access the web interface.

5.6.1. User Interface and Visualization

Figure 5.3 shows a screenshot of the frontend, where the user can start use cases,
change the parameters and inspect the benchmarking results as horizontal bar chart.
The user can choose the use case and the possible algorithms that are compatible with it.
The connected targets are displayed in a drop-down menu, whereby they are currently
statically inserted - this may be changed to only display the devices currently connected
to the backend. The Update Size is only available for the use case Secure Software
Update, whereby this parameter defines the size of the plaintext that will be signed by
the server. The plaintext itself is randomly generated on server-side.
After the use case request has been handled by the server and a response has been

received, the benchmarking results are visualized in a horizontal bar chart as seen in
the figure. For the use cases, where digital signature algorithms are used, the chart
gives a comparison between communication delay, verification time and signing time.
The communication delay is the time delta between sending and receiving the message.
Signing and verification time is the measured time for the respective algorithm process.
For the Secure Channel Establishment use case, instead of the Signing and Verification
time, the time taken for Encapsulation and Decapsulation are being benchmarked
and shown in the diagram. However, Elliptic-Curve-Diffie-Hellman does in fact not
encapsulate or decapsulate the shared secret as Kyber does, but it’s measured time for
the computation of the shared secret is displayed there as comparison to Kyber.

The values are presented in microseconds since a presentation in milliseconds would
hide communication delay and verification time as they are (at least within the same
network) neglectably small. Because the signing time for RSA and for Dilithium2
are significantly larger than communication and verification time, the x-axis has been
limited to 2000 microseconds. The detailed time value can be read from the description
of the respective bar.

5.6.2. Communication with Server

As written before, the client runs as Python script, where the user interface logic is
implemented by JavaScript. The library Eel allows to use callbacks between Python
and JavaScript, hence a use case request can be triggered from the website as Python
function. In Listing 5.2 the start_usecase() function is given as example, where the
annotation @eel.expose informs Eel that this function should be exposed to JavaScript

3https://github.com/python-eel/Eel

Evaluation, integration and demonstration of use cases
Frontend 32

Figure 5.3.: Screenshot of the frontend

code. This function can then be started as regular call as given in Listing 5.3. As
argument in the last brackets of the Javascript code, another function can be provided
as callback.

Listing 5.2: Exposed function in Python

1 @eel.expose
2 def start_usecase(addr, port, usecase, target, algos, msglen):
3 try:
4 ret_timings, ret_timings_len = createFront2BackMsg(addr, port,

usecase,
5 target, algos, msglen)
6 return usecase, ret_timings, ret_timings_len
7 except ConnectionRefusedError:
8 eel.handleConRefused()

Listing 5.3: Call of exposed function in JavaScript

1 eel.start_usecase(server_addr, server_port, usecase, target, algos,
2 msglen)(usecaseCallback);

Inside the start_usecase() function, the arguments are checked and a UDP socket
with the given server IP address and port number is created and connected to. The
respective IP and port are retrieved from the environment variables, that are set by the
Docker container. If the connection is refused, an exception is raised, which calls an

Evaluation, integration and demonstration of use cases
Frontend 33

error handler that has been implemented in JavaScript to inform the user. Otherwise, a
Front2Back protobuf message is created and sent via the UDP connection. Then, the
client switches into a blocking state until it receives an answer from the server. This
message is unpacked as Back2Frontmessage, containing the timings of the processed
algorithms. Those values are passed to the JavaScript code for further processing and
visualization on the user interface.

5.7. Target - Tricore TC38xQP

The target consists of a specific hardware board on which the cryptographic operation
of the corresponding use case is performed. The target communicates with the server
to determine the use case, exchange runtime measurements, inputs, and outputs of the
cryptographic operation.

5.7.1. Implementation of traditional cryptographic primitives

Traditional cryptographic primitives are primitives that are currently defined by AUTO-
SAR which do not contain PQC primitives. This section describes how these primitives
are implemented in an AUTOSAR (version 4.3.1) environment. We only focus on a
signature scheme and a key exchange algorithm.

Signature Scheme

For the signature scheme we employ the RSASSA-PKCS1-v1.5 scheme for signature
generation and verification. The signature scheme RSASSA-PKCS1-v1.5 is implemented
according to RFC 8017 [18]. The essential part of the configuration of the cryptographic
primitive for signature generation is shown in Listing 5.4. For the secondary family
other hash algorithms could be configured, ranging from SHA1 to SHA2 and SHA3
with different hash sizes. The primitive for the secondary family doesn’t have to be
configured explicitly.

Listing 5.4: SignatureGenerate RSASSA-PKCS1-v1.5 config.

1 CryptoPrimitive:
2 CryptoPrimitive_SIGNATUREGENERATE_RSA_RSASSAPKCS1V15:
3 CryptoPrimitiveService: SIGNATURE_GENERATE
4 CryptoPrimitiveAlgorithmFamiliy: ALGOFAM_RSA
5 CryptoPrimitiveAlgorithmMode: ALGOMODE_RSASSA_PKCS1_v1_5
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: ALGOFAM_SHA2_512
7

8 CryptoKeyElement:
9 CRYPTO_KE_SIGNATURE_KEY:

10 Size: 1293 (Bytes)
11 Format: CRYPTO_KE_FORMAT_BIN_RSA_PRIVATEKEY

The configuration of the RSASSA-PKCS1-v1.5 signature verification scheme, see
Listing 5.5, is analogous to the signature generation, with the exception of the format

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 34

and size of the “CryptoKeyElement”. The key format of the public key and private key
adheres to RFC 8017 [18] chapter 3.1. and 3.2. second representation respectively.

Listing 5.5: SignatureVerify RSASSA-PKCS1-v1.5 config.

1 CryptoPrimitive:
2 CryptoPrimitive_SIGNATUREVERIFY_RSA_RSASSAPKCS1V15:
3 CryptoPrimitiveService: SIGNATURE_VERIFY
4 CryptoPrimitiveAlgorithmFamiliy: ALGOFAM_RSA
5 CryptoPrimitiveAlgorithmMode: ALGOMODE_RSASSA_PKCS1_v1_5
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: ALGOFAM_SHA2_512
7

8 CryptoKeyElement:
9 CRYPTO_KE_SIGNATURE_KEY:

10 Size: 270 (Bytes)
11 Format: CRYPTO_KE_FORMAT_BIN_RSA_PUBLICKEY

AUTOSAR specifies that for the service Crypto_SignatureGenerate the input buffer
Plaintext is required in the operation mode UPDATE and optional in the mode FINISH.
The generated output buffer Signature is required in the FINISH mode. The key
handling is done separately.

Crypto_SignatureGenerate: Crypto_SignatureVerify:
Input:

- Plaintext - Plaintext
- Signature

Key:
- RSA_PRIVATEKEY - RSA_PUBLICKEY

Output:
- Signature - Verification result

For Crypto_SignatureVerify the Plaintext is required in the operation mode UPDATE
and optional in the mode FINISH. The Signature is required in mode FINISH and
the Verification result is also required in FINISH mode. Since both services are
cryptographic primtives they are processed as jobs via the general interface Crypto-
_ProcessJob and not as direct function calls in the Crypto Driver module. This means that
also all input and output information are stored in the data type Crypto_JobPrimitive-
InputOutputType and not handled as function parameters.

Key Exchange

For the key exchange we employ an Elliptic Curve Diffie-Hellman (ECDH) with Curve
X25519. The ECDH primitive is implemented according to RFC 7748 [15]. The
key exchange consists of the two services Crypto_KeyExchangeCalcPubVal and Crypto-
_KeyExchangeCalcSecret. Crypto_KeyExchangeCalcPubVal calculates the public value
from own secret. The public value is exchanged with the other peer of the key exchange.
Crypto_KeyExchangeCalcSecret calculates the shared secret with the exchanged public
value. A snippet of the configuration can be found in Listing 5.6. The main part of the
key exchange configuration is the configuration of the keys.

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 35

The keys (“CryptoKeys”) are provided by the Crypto Driver Object. A CryptoKey can
be referenced by a job in the Csm. One CryptoKey consists of one or more key elements.
To map the “CryptoKeyElements” to a CryptoKey the container “CryptoKeyType” is
used. One CryptoKey references exactly one CryptoKeyType. A CryptoKeyType consists
of references to one or more CryptoKeyElements. A CryptoKeyElement is used to store
the data and contains all relevant information like read/write access, maximum size of
the element, init value after startup, or format of the key element.

Listing 5.6: Key Exchange ECDH config simplified.

1 CryptoKey:
2 CryptoKey_KeyExchange_X25519:
3 CryptoKeyTypeRef: CryptoKeyType_KeyExchange_X25519
4

5 CryptoKeyType:
6 CryptoKeyType_KeyExchange_X25519:
7 CryptoKeyElementRef:
8 CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE
9 CRYPTO_KE_KEYEXCHANGE_OWNPUBKEY

10 CRYPTO_KE_KEYEXCHANGE_PRIVKEY
11 CRYPTO_KE_KEYEXCHANGE_ALGORITHM
12 CRYPTO_KE_KMNCOMMON_WORKSPACE
13

14 CryptoKeyElement:
15 CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE:
16 Id: 1
17 Size: 32 (Bytes)
18 Format: CRYPTO_KE_FORMAT_BIN_OCTET
19 CRYPTO_KE_KEYEXCHANGE_OWNPUBKEY
20 CRYPTO_KE_KEYEXCHANGE_PRIVKEY
21 CRYPTO_KE_KEYEXCHANGE_ALGORITHM
22 CRYPTO_KE_KMNCOMMON_WORKSPACE

For the key exchange we need to configure several key elements. To specify which
key exchange shall be used we need to set the specific key exchange protocol in
the key element CRYPTO_KE_KEYEXCHANGE_ALGORITHM. With this we signal that
the whole key is used for the specified key exchange algorithm. The key element
CRYPTO_KE_KEYEXCHANGE_PRIVKEY represents the private key and is used to
calculate the public value CRYPTO_KE_KEYEXCHANGE_OWNPUBKEY and shared
secret CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE. The private key has to be set
before calling the services Crypto_KeyExchangeCalcPubVal or Crypto_KeyExchange-
CalcSecret.

As mentioned earlier a common workspace is shared between all the cryptographic
primitives for runtime data. Since this workspace is shared only between primitives that
follow the job-based approach, all key management services like key exchange don’t
have a common workspace defined by AUTOSAR. To get around this, we introduced
another workspace which is shared between the configured key management services.
The size of this extra workspace is configured via the key element CRYPTO_KE-
_KMNCOMMON_WORKSPACE.

Since the two services Crypto_KeyExchangeCalcPubVal and Crypto_KeyExchange-

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 36

CalcSecret are key management services and hence don’t follow the job-based approach,
they are only available via a synchronous call with the operation mode SingleCall.
This also means that they are implemented without the job state machine (see Figure
4.3).

Crypto_KeyExchangeCalcPubVal: Crypto_KeyExchangeCalcSecret:
Input:

- CryptoKeyId - CryptoKeyId
- PartnerPublicValue

Key:
- CryptoKey_KeyExchange_X25519 - CryptoKey_KeyExchange_X25519

Output:
- PublicValue - SharedSecret

Both services have the input parameter “CryptoKeyId” with which they can access
the configured key CryptoKey_KeyExchange_X25519. The service Crypto_KeyExchange-
CalcPubVal calculates the public value and returns it via the output parameter PublicValue
and also saves it to the key element CRYPTO_KE_KEYEXCHANGE_OWNPUBKEY. For the
service Crypto_KeyExchangeCalcSecret, the shared secret is not returned directly by the
function, but written to the key element CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE
instead.

5.7.2. Implementation of PQC primitives

This section explains how a PQC primitive for a signature scheme and key encapsulation
mechanism (KEM) can be implemented in an AUTOSAR (version 4.3.1) environment.
KEMs are not considered by AUTOSAR so far, only a key exchange API is specified.
Our solution adds a new key management API for the encapsulation and decapsulation
of a KEM. The key generation of a KEM can be performed by the already existing
key generation interface of AUTOSAR. For the PQC signature scheme, our solution
implements the signature generation and verification as a cryptographic primitive using
the job-based approach. The key generation of the signature scheme is implemented
using the existing key generation interface of AUTOSAR.

Signature Scheme

For the signature scheme we implement the PQC primitive “CRYSTALS-Dilithium” [13],
more precise the parameter set Dilithium II from round 2 of the NIST PQC competition4.
Dilithium consists of three functions: key generation, signature generation, and signature
verification.

Before we have a look into the function implementations we add a new algorithm
family id for the primitive Dilithium (see Listing 5.7), which is used in the configuration
to enable the usage of Dilithium as a crypto service.

4https://github.com/pq-crystals/dilithium/tree/round2

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 37

Listing 5.7: Dilithium algorithm family id.

1 #if !(defined CRYPTO_ALGOFAM_DILITHIUM)
2 #define CRYPTO_ALGOFAM_DILITHIUM 0xE1U
3 #endif /* #if !(defined CRYPTO_ALGOFAM_DILITHIUM) */

The key generation function of Dilithium generates a secret key and a public
key for the signature scheme. It is implemented in the general AUTOSAR function
Crypto_KeyGenerate(uint32 cryptoKeyId) which centralizes all key generation algo-
rithms of different primitives. Crypto_KeyGenerate is part of the direct key management
API and therefore does not follow the job-based approach. To use the key generation,
we need to first set the AUTOSAR-defined key element CRYPTO_KE_KEYGENERATE-
_ALGORITHM, which specifies which key generation algorithm shall be used when
calling the general function Crypto_KeyGenerate. Its data consists of the prior defined
CRYPTO_ALGOFAM_DILITHIUM. Then the key has to be set valid with the function
Crypto_KeyValidSet() and Crypto_KeyGenerate() can be called. The result of this
function is stored in the configured key elements (see Listing 5.8). The public key is
stored in the key elements RHO and T1 and consists of 1184 bytes total. The secret key
is stored in the key elements RHO, K, TR, S1, S2, and T0 and consists of 2800 bytes total.
AUTOSAR defines a key element index which maps key elements to a key element id of
a crypto service. For Dilithium we extend this key element index with the key elements
of the public key and secret key.
In addition to these key elements we have to configure another set of key elements

and a crypto primitive since Dilithium uses a random function in its key generation
phase. Three 32 byte random values are needed for RHO, K, and S1,S2 sampling. For
this we employ the crypto primitive RANDOM_AES_CTRDRBG with the key elements
RANDOM_ALGORITHM, CIPHER_KEY, and RANDOM_SEED_STATE. These key elements
also have to be set prior to the call of Crypto_KeyValidSet and Crypto_KeyGenerate.

Listing 5.8: KeyGenerate Dilithium config.

1 CryptoPrimitive:
2 CryptoPrimitive_RANDOMGENERATE_AES_CTRDRBG:
3 CryptoPrimitiveService: RANDOM
4 CryptoPrimitiveAlgorithmFamiliy: CRYPTO_ALGOFAM_AES
5 CryptoPrimitiveAlgorithmMode: CRYPTO_ALGOMODE_CTRDRBG
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: CRYPTO_ALGOFAM_NOT_SET
7

8 CryptoKeyElement:
9 CRYPTO_KE_KEYGENERATE_ALGORITHM

10 CRYPTO_KE_DILITHIUM_BUF01
11 CRYPTO_KE_DILITHIUM_KEY_RHO
12 CRYPTO_KE_DILITHIUM_KEY_K
13 CRYPTO_KE_DILITHIUM_KEY_TR
14 CRYPTO_KE_DILITHIUM_KEY_S1
15 CRYPTO_KE_DILITHIUM_KEY_S2
16 CRYPTO_KE_DILITHIUM_KEY_T0
17 CRYPTO_KE_DILITHIUM_KEY_T1
18 CRYPTO_KE_RANDOM_ALGORITHM
19 CRYPTO_KE_CIPHER_KEY

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 38

20 CRYPTO_KE_RANDOM_SEED_STATE

The signature generation is implemented as a cryptographic primitive. Therefore
we have to add the primitive to the configuration and specify the service, family, and
mode, see Listing 5.9. For the service we specify the value SIGNATURE_GENERATE
which is a defined crypto service by AUTOSAR, so we don’t need to add a new service for
Dilithium. For the family we specify CRYPTO_ALGOFAM_DILITHIUM which we already
introduced, see above. For the mode we specify CRYPTO_ALGOMODE_NOT_SET since
we don’t employ a special mode. The secondary family is currently not configured.

To generate the signature the secret key is used. The secret key consists of the
elements RHO, K, TR, S1, S2, and T0. For the signature generation we have to
set the elements of the secret key and set the key to valid like we seen before in
the key generation. Since the signature generation is a cryptographic primitive and
therefore follows the job-based approach, we set the plaintext and its length in the
Crypto_JobPrimitiveInputOutputType (4.1) in the fields inputPtr and inputLength
respectively. Finally, we call Crypto_ProcessJob() to process the cryptographic primitive
and the resulting signature will be written to the ouputPtr and outputLengthptr fields
of the job.

The signature generation of Dilithium is only available with a synchronous processing
and only in the operation mode SingleCall. This means that the state machine of
the crypto primitive is not able to process the operation modes Start, Update, and Finish
individually but rather the whole calculations are processed within one call and the
caller is blocked till the request is finished.

Listing 5.9: SignatureGenerate Dilithium config.

1 CryptoPrimitive:
2 CryptoPrimitive_SIGNATUREGENERATE_DILITHIUM_NOTSET:
3 CryptoPrimitiveService: SIGNATURE_GENERATE
4 CryptoPrimitiveAlgorithmFamiliy: CRYPTO_ALGOFAM_DILITHIUM
5 CryptoPrimitiveAlgorithmMode: CRYPTO_ALGOMODE_NOT_SET
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: CRYPTO_ALGOFAM_NOT_SET

The implementation of signature verification of Dilithium is analogous to the
signature generation of Dilithium, with the service SIGNATURE_VERIFY and the public
key consisting of RHO and T1. The signature verification takes the plaintext and the
signature as input and together with the public key calculates the verification result.

Dilithium uses the extendable-output functions SHAKE-128 and SHAKE-256 [20] for
various purposes like expanding the public matrix � from a seed, sampling the secret
vectors A1 and A2, and as a collision resistant hash (CRH). AUTOSAR currently only
allows to configure one secondary primitive for a crypto service via the configuration
parameter SecondaryFamiliy. Since Dilithium employs two secondary primitives, this
can’t bemappedwith AUTOSAR at themoment. Therefore, the two secondary primitives
SHAKE-128 and SHAKE-256 are implemented as internal functions of Dilithium.

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 39

Crypto_SignatureGenerate: Crypto_SignatureVerify:
Input:

- Plaintext - Plaintext
- Signature

Key:
- Dilithium_PRIVATEKEY - Dilithium_PUBLICKEY

Output:
- Signature - Verification result

Key encapsulation mechanism (KEM)

For the KEM we implement the PQC primitive ”CRYSTALS-Kyber“ [4], more precise the
parameter set Kyber512 of round 3 of the NIST PQC competition5. Kyber consists of
three functions: key generation, key encapsulation, and key decapsulation. Similar to
Dilithium, we first have to add a new algorithm family id for the primitive Kyber (see
Listing 5.10), to add the crypto service Kyber.

Listing 5.10: Kyber algorithm family id.

1 #if !(defined CRYPTO_FAM_KYBER)
2 #define CRYPTO_FAM_KYBER 0xE2U
3 #endif /* #if !(defined CRYPTO_FAM_KYBER) */

The key generation function of Kyber generates a secret key and public key. Similar
to Dilithium, it is implemented in the AUTOSAR specified function Crypto_KeyGenerate(
uint32 cryptoKeyId) and therefore accessible via the direct key management API. To
generate the key pair we need to first set the key element CRYPTO_KE_KEYGENERATE-
_ALGORITHM with the value of CRYPTO_ALGOFAM_KYBER, set the key valid with the
function Crypto_KeyValidSet() and finally call Crypto_KeyGenerate(). The output is
stored in the configured key elements (see Listing 5.11). The public key KYBER_KEY-
_PUBLIC consists of a size of 800 bytes and the secret key KYBER_KEY_SECRET of a
size of 1632 bytes. We extend the key element index with the public and secret key for
Kyber.
Since Kyber utilizes two 32 byte random values in the key generation phase, we

configure the crypto primitive RANDOM_AES_CTRDRBGwith the key elements RANDOM-
_ALGORITHM, CIPHER_KEY, and RANDOM_SEED_STATE.

Listing 5.11: KeyGenerate Kyber config.

1 CryptoPrimitive:
2 CryptoPrimitive_RANDOMGENERATE_AES_CTRDRBG:
3 CryptoPrimitiveService: RANDOM
4 CryptoPrimitiveAlgorithmFamiliy: CRYPTO_ALGOFAM_AES
5 CryptoPrimitiveAlgorithmMode: CRYPTO_ALGOMODE_CTRDRBG
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: CRYPTO_ALGOFAM_NOT_SET
7

8 CryptoKey_Kyber_KeyGen:

5https://github.com/pq-crystals/kyber/tree/v3.0

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 40

9 CryptoKeyElement:
10 CRYPTO_KE_KEYGENERATE_ALGORITHM
11 CRYPTO_KE_KYBER_KEY_PUBLIC
12 CRYPTO_KE_KYBER_KEY_SECRET
13 CRYPTO_KE_RANDOM_ALGORITHM
14 CRYPTO_KE_CIPHER_KEY
15 CRYPTO_KE_RANDOM_SEED_STATE

For the key encapsulation of Kyber we introduce a new interface Crypto_Key-
EncapsulateCalcEnc() (see Listing 5.12), because AUTOSAR does not consider a key
encapsulation mechanism in its standard so far. Since key encapsulation is a key
management algorithm, this new interface is part of the key management API and
therefore does not follow not the job-based approach like signature generation for
Dilithium. Which means that this key management service is only callable in a blocking
mode resp. has a synchronous processing. Since this is a new interface of the Crypto
Driver module, we also have to adapt the CryIf and Csm module of the Crypto stack to
make this key management service accessible to other components in the AUTOSAR
architecture. Therefore, we add the function Csm_KeyEncapsulateCalcEnc() in the
Csm module and the function CryIf_KeyEncapsulateCalcEnc() in the CryIf module.

Listing 5.12: KeyEncapsulateCalcEnc interface.

1 FUNC(Std_ReturnType, CRYPTO_CODE) Crypto_KeyEncapsulateCalcEnc
2 (
3 uint32 CryptoKeyId,
4 uint32 CryptoRandomKeyId,
5 const uint8* PartnerPublicValuePtr,
6 uint32 PartnerPublicValueLength,
7 uint8* CiphertextPtr,
8 uint32* CiphertextLengthPtr
9);

For the configuration of the key encapsulation (see Listing 5.13), we first set the
AUTOSAR-defined key element CRYPTO_KE_KEYEXCHANGE_ALGORITHM with the
value of the algorithm family id of Kyber (see Listing 5.10). The original intent of
the key element CRYPTO_KE_KEYEXCHANGE_ALGORITHM is to decide which key
exchange algorithm shall be used. Since a KEM can be seen as a unidirectional key
exchange, we use this key element for our purposes. After we set the key to valid,
we can call the key encapsulation function Crypto_KeyEncapsulateCalcEnc() with the
public key of the peer as an input parameter with a size of 800 bytes. The result
of this function is the ciphertext to be transferred to the peer and the shared secret.
The ciphertext is returned via the function parameter CiphertextPtr consisting
of 768 bytes. The shared secret is stored in the AUTOSAR-defined key element
CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE with a size of 32 bytes. Again we can
utilize a key element original intended for key exchange service.

Additional, we have to configure and set the crypto primitive RANDOM_AES_CTRDRBG
with its key elements, since the encapsulation needs to generate a 32 byte random
secret.

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 41

Listing 5.13: KeyEncapsulateCalcEnc Kyber config.

1 CryptoPrimitive:
2 CryptoPrimitive_RANDOMGENERATE_AES_CTRDRBG:
3 CryptoPrimitiveService: RANDOM
4 CryptoPrimitiveAlgorithmFamiliy: CRYPTO_ALGOFAM_AES
5 CryptoPrimitiveAlgorithmMode: CRYPTO_ALGOMODE_CTRDRBG
6 CryptoPrimitiveAlgorithmSecondaryFamiliy: CRYPTO_ALGOFAM_NOT_SET
7

8 CryptoKey_Kyber_Enc:
9 CryptoKeyElement:

10 CRYPTO_KE_KEYEXCHANGE_ALGORITHM
11 CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE
12 CRYPTO_KE_KMNCOMMON_WORKSPACE
13 CryptoKey_RandomGenerateAESCTRDRBG:
14 CryptoKeyElement:
15 CRYPTO_KE_RANDOM_ALGORITHM
16 CRYPTO_KE_CIPHER_KEY
17 CRYPTO_KE_RANDOM_SEED_STATE

For the key decapsulation of Kyber, we also introduce a new key management
interface Crypto_KeyEncapsulateCalcDec() (see Listing 5.14) just like for the encapsulation.
Therefore we also have to add the new interface in the CryIf and Csmmodule accordingly.

Listing 5.14: Key management interface for Kyber.

1 FUNC(Std_ReturnType, CRYPTO_CODE) Crypto_KeyEncapsulateCalcDec
2 (
3 uint32 CryptoKeyId,
4 const uint8* CiphertextPtr,
5 uint32 CiphertextLength
6);

For the configuration of the decapsulation, we can use the AUTOSAR-defined key
elements CRYPTO_KE_KEYEXCHANGE_PRIVKEY and- KEYEXCHANGE_SHAREDVALUE
initially intended for Key Exchange. A snippet of the configuration is given in Listing
5.15. To use the key decapsulation, we have to set the key elements CRYPTO_KE-
_KEYEXCHANGE_ALGORITHM and CRYPTO_KE_KEYEXCHANGE_PRIVKEY and call
Crypto_KeyEncapsulateCalcDec() with the ciphertext as an input parameter. The
resulting shared secret is stored in the key element CRYPTO_KE_KEYEXCHANGE-
_SHAREDVALUE.

Listing 5.15: KeyEncapsulateCalcDec Kyber config.

1 CryptoKey_Kyber_Dec:
2 CryptoKeyElement:
3 CRYPTO_KE_KEYEXCHANGE_ALGORITHM
4 CRYPTO_KE_KEYEXCHANGE_PRIVKEY
5 CRYPTO_KE_KEYEXCHANGE_SHAREDVALUE
6 CRYPTO_KE_KMNCOMMON_WORKSPACE

Kyber uses various hash functions of the Keccak family during its key generation,
encapsulation, and decapsulation phase. These hash functions include SHA3-256 and

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 42

SHA3-512, SHAKE-128 as a XOF, and SHAKE-256 as a PRF and KDF. The hash functions
are implemented as internal functions of Kyber.

Implementation Aspects

For the key encapsulation mechanism Kyber, our solution adds a new key management
API for the encapsulation and decapsulation. Another idea would be to use the existing
key management API of the key exchange for the encapsulation and decapsulation
of a KEM. In this case, the encapsulation could be mapped to the function Crypto-
_KeyExchangeCalcPubVal and the decapsulation could be mapped to the function
Crypto_KeyExchangeCalcSecret. However, the function parameters are not congruent
and thus a misuse of the parameters and additional key elements has to be taken into
account.
Both Dilithium and Kyber use multiple secondary primitives for various hash appli-

cations. Even though AUTOSAR does not support multiple secondary primitives, as
already discussed before, Dilithium and Kyber use exclusively symmetric primitives
based on Keccak. One implementation improvement would be to combine the symmetric
primitives of Dilithium and Kyber.

Evaluation, integration and demonstration of use cases
Target - Tricore TC38xQP 43

6. D6.2 - Evaluation of implemented
schemes

In this chapter we give an overview of the runtime measurements, the memory con-
sumption, and the feasibility of the implemented primitives regarding to the selected
use cases, as well as other evaluation aspects.

6.1. TriCore Performance Measurements

For the performance measurements, the 32-bit AURIX™ TriCore™ microcontroller
TC387QP from Infineon is used, for more information see Chapter 3.4. The performance
measurements depend on the hardware and therefore the results are depending on the
specific test environment. During the runtime measurements, the TC38x CPU frequency
is clocked at 300 MHz. The actual runtime is measured using the System Timer Module
(STM), which is clocked at 100 MHz. We give all runtime values as an average over
100 iterations. In the following, we measured only the runtime of the primitive itself in
the Crypto modul of an AUTOSAR environment. The start and stop time was therefore
measured directly before and after the actual algorithm. That means without setting
the necessary keys and extracting the result in the keys of the primitive. All available
metrics can be found in Table A.1.

RS
A

Di
lith

ium
0

5

10

15

20

25

30 27.98

9.54

m
s

(a) runtime measurement

RA
M

RO
M

0

0.5

1

1.5

2

2.5

3

3.5

·104

6,293

11,965

30,361

17,626

by
te
s

RSA
Dilithium

(b) memory consumption

Figure 6.1.: Runtime measurement (in ms) and memory consumption (in bytes) of
signature verification of RSA-PKCS1V15 and Dilithium.

Evaluation, integration and demonstration of use cases
D6.2 - Evaluation of implemented schemes 44

6.1.1. Use case: Secure Software Download and Secure Access Control

Since the two use cases Secure Software Download and Secure Access Control employ
the same cryptographic primitive, they are discussed together here. For this use case, the
signature verification of RSA-PKCS1V15 (RSA) and Dilithium is compared. The runtime
measurement and total memory consumption is shown in Figure 6.1. RSA-PKCS1V15
uses the hash algorithm SHA2-256 as a secondary primitive and the runtime was
measured with a 2048 bit modulus. The Dilithium implementation uses the parameter
set II of the second round of the NIST PQC competition. Both RSA and Dilithium verify
a message of 1024 bytes. For the signature verification, Dilithium is 2.9 times faster
than RSA as can be seen in the Figure 6.1a. In return Dilithium needs significantly
more memory than RSA, especially RAM (see Figure 6.1b). Dilithium needs 4.8 times
more RAM than RSA.

6.1.2. Use case: Secure Session Establishment

For this use case, the key exchange protocol ECDH with X25519 is compared to the
key encapsulation mechanism Kyber. The Kyber implementation uses the parameter
set Kyber512. For the key exchange X25519 the functions KeyExchangeCalcPubVal
(CalcPublic) and KeyExchangeCalcSecret (CalcSecret) need to be processed on the
embedded device. In this use case, the microcontroller is just responsible for the
decapsulation of the key encapsulation mechanism Kyber. This is not a suitable
comparison, more generally the comparison of a key exchange protocol and a key
encapsulation mechanism in this regard needs to be taken with a grain of salt. Another
reason is that it is not clear what is expected from the embedded device in an automotive
environment, since a KEM is until now not considered in AUTOSAR. Because of that,
we compared both the encapsulation and decapsulation of Kyber to the key exchange
X25519, see Figure 6.2.

X2
55
19

Ky
be
r

0

10

20

30

40

50 46.4

4.19

48.5

4.31

m
s

Enc
Dec

(a) runtime measurement

RA
M

RO
M

0

0.5

1

1.5

2

·104

829

11,892

1,059

19,722

2,386

16,758

by
te
s

X25519
Enc
Dec

(b) memory consumption

Figure 6.2.: Runtime measurement (in ms) and memory consumption (in bytes) of
key exchange protocol X25519 and KEM Kyber encapsulation (Enc) and
decapsulation (Dec). (a) In case of X25519 “Enc” means CalcPublic and
“Dec” CalcSecret.

Evaluation, integration and demonstration of use cases
TriCore Performance Measurements 45

As for the runtime, Kyber encapsulation is compared to X25519 CalcPublic roughly
11 times faster, the same holds for decapsulation and CalcSecret. If we just compare
the decapsulation of Kyber to X25519 CalcPublic and CalcSecret, then Kyber is roughly
22 times faster. The key generation is not included, since the use case assumes that the
keys are pre-generated.

For the RAM consumption, X25519 and Kyber encapsulation need roughly the same,
as can be seen in Figure 6.2b. The decapsulation requires more than twice the amount
of RAM then the encapsulation. For the ROM consumption, the encapsulation of Kyber
needs roughly 1.7 times the amount of ROM than the key exchange X25519 and the
decapsulation needs 1.4 times the amount of ROM. Like Dilithium, Kyber is also faster
buts needs more memory then the traditional primitives for these use cases.

6.1.3. Further aspects

In the following, we compare the signature generation of RSA and Dilithium, as
the signature generation is not part of the given use cases above. We use the same
parameters mentioned in section 6.1.1 and employ again a message size of 1024 bytes.
The comparison of the runtime and memory consumption is shown in Figure 6.3.
As for the runtime, Dilithium is roughly 60 times faster than RSA (Figure 6.3a with
logarithmic scale). In return, Dilithium needs more memory than RSA especially more
RAM. Dilithium has roughly 3 times the RAM consumption than RSA.

The signature generation of RSA is significantly slower than the signature generation
of Dilithium. If we compare the signature generation of RSA to the signature verification
of RSA we also see a big difference in runtime by a magnitude. This is because of the
costly operations of the RSA signature generation [18].

RS
A

Di
lith

ium

102

103

2,556

42.9

m
s

(a) runtime measurement

RA
M

RO
M

0

1

2

3

4

5

·104

16,537
12,964

46,473

20,960by
te
s

RSA
Dilithium

(b) memory consumption

Figure 6.3.: Runtime measurement (in ms) and memory consumption (in bytes)
of signature generation of RSA-PKCS1V15 and Dilithium. Runtime
measurement (a) is depicted with logarithmic scale.

Dilithium uses rejection sampling during its signing procedure which leads to big
differences in runtime for different inputs with the same length. Because of rejection
sampling, the signing algorithm can - under specific conditions - reject and restart

Evaluation, integration and demonstration of use cases
TriCore Performance Measurements 46

the signing procedure to fulfill security and correctness reasons [13]. Therefore the
signing process takes more time whenever it rejects, which is highly dependent on the
given input. We measured the signature generation of Dilithium with three different
test vectors of the same length and could see a difference with up to 5 times more
runtime. The value given in Figure 6.3a and Table A.1 is an average of the measured
performance.
The current implementation of Dilithium and Kyber is in pure software and is not

using any hardware accelerators. However, future implementations could make use
of hardware accelerated cryptographic primtives provided by the Hardware Security
Module (HSM) of the given microcontroller. This transition would enhance the system’s
security and performance capabilities by the usage of HW accelerators. One aspect
to improve would be symmetric primitives used by Dilithmum and Kyber [13], [4].
Both make use of Keccak based primitives like SHA3 and SHAKE in various sizes.
Therefore, these symmetric primitives would be candidates for hardware accelerated
implementations. Further, the variant “Kyber-90s” of Kyber uses AES-256 and SHA2
instead of the Keccak based primitives SHA3 and SHAKE. The variant “Dilithium-AES” of
Dilithium uses also AES-256. Therefore, another possibility for future implementations
would be to implement the variants Kyber-90s and Dilithium-AES, and make use of
a hardware accelerated AES-256 and SHA2 implementation. However, the Infineon
AURIX TC3xQP HSM is only capable of hardware-accelerated SHA2-256 and AES-
128 [1]. Therefore it is only partly suitable for the variant Kyber-90s to enhance the
symmetric primitive SHA2-256.

Evaluation, integration and demonstration of use cases
TriCore Performance Measurements 47

A. Performance Measurements

Primitive ms Cycles RAM (bytes) ROM (bytes)
RSA SigGen 2556.0 255600049 16537 12964

RSA SigVerify 27.989 2798881 6293 11965

X25519 CalcPublic 46.403 4640328
829 11892X25519 CalcSecret 48.508 4850844

Dilithium KeyGen 9.597 959729 52141 27832

Dilithium SigGen 42.898 4289792 46473 20960

Dilithium SigVerify 9.541 954100 30361 17626

Kyber KeyGen 3.525 352519 5485 20506

Kyber Enc 4.192 419248 1059 19722

Kyber Dec 4.315 431471 2386 16758

Table A.1.: All TC387QP metrics of primitives implemented in AUTOSAR.

Evaluation, integration and demonstration of use cases
Performance Measurements 48

Bibliography

[1] Infineon Technologies AG. AURIX™ 32-bit microcontrollers for automotive and
industrial applications - Product Brochure. version 1.0. url: https://www.
infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-
v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7.

[2] Infineon Technologies AG. TC38x 32-Bit Single-Chip Microcontroller. version 1.2.
url: https://www.infineon.com/dgdl/Infineon-TC38x-DataSheet-
v01_02-EN.pdf?fileId=5546d4626f229553016fb316e6cf748b.

[3] Petteri Aimonen. nanopb: Protocol Buffers for Embedded Systems. https://
github.com/nanopb/nanopb. Accessed: 30 July 2023. 2011.

[4] Roberto Avanzi andothers. CRYSTALS-Kyber Algorithm Specifications And Supporting
Documentation. NIST Post-Quantum Cryptography. version 3.0. october 2020.
url: https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[5] AUTOSAR Consortium. AUTOSAR About. Accessed: June 19, 2023. url: https:
//www.autosar.org/about.

[6] AUTOSAR Consortium. AUTOSAR Adaptive Platform. url: https://www.
autosar.org/standards/adaptive-platform.

[7] AUTOSARConsortium. AUTOSAR Classic Platform. url: https://www.autosar.
org/standards/classic-platform.

[8] AUTOSAR Consortium. AUTOSAR Layered Software Architecture. version 4.3.1.
2017. url: https://www.autosar.org/fileadmin/standards/R4-
3/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf.

[9] AUTOSAR Consortium. Specification of Crypto Driver. version 4.3.1. 2017. url:
https://www.autosar.org/fileadmin/standards/R4-3/CP/
AUTOSAR_SWS_CryptoDriver.pdf.

[10] AUTOSAR Consortium. Specification of Crypto Interface. version 4.3.1. 2017.
url: https://www.autosar.org/fileadmin/standards/R4-3/CP/
AUTOSAR_SWS_CryptoInterface.pdf.

[11] AUTOSAR Consortium. Specification of Crypto Service Manager. version 4.3.1.
2017. url: https://www.autosar.org/fileadmin/standards/R4-
3/CP/AUTOSAR_SWS_CryptoServiceManager.pdf.

[12] AUTOSAR Consortium. Specification of Crypto Service Manager. version R21-11.
2021. url: https://www.autosar.org/fileadmin/standards/R21-
11/CP/AUTOSAR_SWS_CryptoServiceManager.pdf.

Evaluation, integration and demonstration of use cases
Bibliography 49

https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TC38x-DataSheet-v01_02-EN.pdf?fileId=5546d4626f229553016fb316e6cf748b
https://www.infineon.com/dgdl/Infineon-TC38x-DataSheet-v01_02-EN.pdf?fileId=5546d4626f229553016fb316e6cf748b
https://github.com/nanopb/nanopb
https://github.com/nanopb/nanopb
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.autosar.org/about
https://www.autosar.org/about
https://www.autosar.org/standards/adaptive-platform
https://www.autosar.org/standards/adaptive-platform
https://www.autosar.org/standards/classic-platform
https://www.autosar.org/standards/classic-platform
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoDriver.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoDriver.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoInterface.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoInterface.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/standards/R4-3/CP/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_CryptoServiceManager.pdf

[13] Léo Ducas andothers. CRYSTALS-Dilithium Algorithm Specifications and Supporting
Documentation. NIST Post-Quantum Cryptography. round 2. march 2019. url:
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions.

[14] International Organization for Standardization. ISO 17356-3:2005(en) Road
vehicles—Open interface for embedded automotive applications— Part 3: OSEK/VDX
Operating System (OS). International Standard. Accessed: July 3, 2023. january
2005. url: https://www.iso.org/standard/40079.html.

[15] Adam Langley, Mike Hamburg and Sean Turner. Elliptic Curves for Security. RFC
7748. january 2016. doi: 10.17487/RFC7748. url: https://www.rfc-
editor.org/info/rfc7748.

[16] Adeline Langlois and Damien Stehle. Worst-Case to Average-Case Reductions
for Module Lattices. Cryptology ePrint Archive, Paper 2012/090. 2012. url:
https://eprint.iacr.org/2012/090.

[17] Daniele Micciancio and Oded Regev. Lattice-based Cryptography. 2008. url:
https://cims.nyu.edu/~regev/papers/pqc.pdf.

[18] Kathleen Moriarty andothers. PKCS #1: RSA Cryptography Specifications Version
2.2. RFC 8017. november 2016. doi: 10.17487/RFC8017. url: https:
//www.rfc-editor.org/info/rfc8017.

[19] Marcel Müller and Michael Meyer. “QuantumRISC WP2 Report: Analysis and
Optimization of PQC schemes”. 2022. url: https://quantumrisc.org/
results/quantumrisc-wp2-report.pdf.

[20] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
august 2015. doi: https://doi.org/10.6028/NIST.FIPS.202.

[21] David Noack andothers. QuantumRISC WP1 Report: Use Cases and Requirements.
2020. url: https://quantumrisc.org/results/quantumrisc-wp1-
report.pdf.

Evaluation, integration and demonstration of use cases
Bibliography 50

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://www.iso.org/standard/40079.html
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://eprint.iacr.org/2012/090
https://cims.nyu.edu/~regev/papers/pqc.pdf
https://doi.org/10.17487/RFC8017
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://quantumrisc.org/results/quantumrisc-wp2-report.pdf
https://quantumrisc.org/results/quantumrisc-wp2-report.pdf
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf

	Executive Summary
	Terminology
	Introduction
	Document structure
	Selection of use cases
	Selection of PQC Algorithm
	CRYSTALS-Dilithium - Signature Scheme
	CRYSTALS-Kyber - Key encapsulation mechanism (KEM)

	Hardware selection
	Infineon Tricore TC38xQP

	AUTOSAR
	Architecture
	Crypto Stack
	Crypto Service Manager
	Crypto Interface
	Crypto Driver
	Cryptographic primitive

	Communication Stack

	D6.1 - Demonstrator description
	Goals
	Architecture
	AURIX TC38xQP Demonstrator
	Demonstrator Sequence
	Server / Backend
	Communication protocol

	Frontend
	User Interface and Visualization
	Communication with Server

	Target - Tricore TC38xQP
	Implementation of traditional cryptographic primitives
	Implementation of PQC primitives

	D6.2 - Evaluation of implemented schemes
	TriCore Performance Measurements
	Use case: Secure Software Download and Secure Access Control
	Use case: Secure Session Establishment
	Further aspects

	Performance Measurements
	Bibliography

